Tìm x, biết
a) x(x - 2012) - 2013x + 2012.2013 = 0
b) (x - 1)3 + 1 + 3x(x - 4) = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Bài.1:\\ a,104^2-16=104^2-4^2=\left(104+4\right)\left(104-4\right)=108.100=10800\\ b,9^8.2^8-\left(18^4-1\right)\left(18^4+1\right)\\ =\left(9.2\right)^8-\left(18^8-1\right)=18^8-18^8+1=1\\ c,999^3+3.999^2+3.999+1\\ =999^3+3.999^2.1+3.999.1^2+1^3=\left(999+1\right)^3=1000^3=1000000000\\ d,42^3-6.42^2+12.42-8\\ =42^3-3.42^2.2+3.42.2^2-2^3\\ =\left(42-2\right)^3=40^3=64000\)
Bài 1
a) 104² - 16
= 104² - 4²
= (104 - 4)(104 + 4)
= 100.108
= 10800
b) 9⁸.2⁸ - (18⁴ - 1)(18⁴ + 1)
= 18⁸ - (18⁸ - 1)
= 18⁸ - 18⁸ + 1
= 1
c) 999³ + 3.999² + 3.999 + 1
= (999 + 1)³
= 1000³
= 1000000000
d) 42³ - 6.42² + 12.42 - 8
= (42 - 2)³
= 40³
= 64000
Ta có : x + (x + 1) + (x + 2) + .... + (x + 2012) = 2012.2013
<=> (x + x + x + ..... + x) + (1 + 2 + .... + 2012) = 2012.2013
<=> 2013x + \(\frac{2012.2013}{2}\) = 2012.2013
<=> 2013x = 2012.2013 - \(\frac{2012.2013}{2}\)
<=> 2013x = 2025078
a) x+2x+3x+4x+...+2011x = 2012.2013
\(\Rightarrow\) x(1+2+3+4+...+2011) = 4050156
\(\Rightarrow\) x.2023066 = 4050156
\(\Rightarrow\) x = 4026/2011
Ta có : 3x(2x - 7) - (6x + 1)(x - 15) - 2010 = 0
=> 6x2 - 21x - (6x2 + x - 90x - 15) - 2010 = 0
=> 6x2 - 21x - 6x2 + 89x + 15 - 2010 = 0
=> 68x - 1995 = 0
?
b) 2x(x - 2012) - x + 2012 = 0
=> 2x(x - 2012) - (x - 2012) = 0
=> (x - 2012) (2x - 1) = 0
⇔[
x−2012=0 |
2x−1=0 |
⇔[
x=2012 |
2x=1 |
⇔[
x=2012 |
x=12 |
Vậy x = {2012;12 }
Ta có : 3x(2x - 7) - (6x + 1)(x - 15) - 2010 = 0
=> 6x2 - 21x - (6x2 + x - 90x - 15) - 2010 = 0
=> 6x2 - 21x - 6x2 + 89x + 15 - 2010 = 0
=> 68x - 1995 = 0
?
b) 2x(x - 2012) - x + 2012 = 0
=> 2x(x - 2012) - (x - 2012) = 0
=> (x - 2012) (2x - 1) = 0
\(\Leftrightarrow\orbr{\begin{cases}x-2012=0\\2x-1=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2012\\2x=1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=2012\\x=\frac{1}{2}\end{cases}}\)
Vậy x = \(\left\{2012;\frac{1}{2}\right\}\)
nốt ý b:
\(\left(x-1\right)^3+1+3x\left(x-4\right)=0\)
\(\Leftrightarrow x^3-3x^2+3x-1+1+3x^2-12x=0\)
\(\Leftrightarrow x^3-9x=0\Leftrightarrow x\left(x^2-9\right)=0\)
\(\Leftrightarrow x\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-3=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy ..............
\(a,x\left(x-2012\right)-2013x+2012.2013=0\)
\(=x\left(x-2012\right)+2013\left(-x+2012\right)=0\)
\(\Rightarrow x\left(x-2012\right)-2013\left(x-2012\right)=0\)
\(\Rightarrow\left(x-2013\right)\left(x-2012\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2013=0\\x-2012=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=2013\\x=2012\end{matrix}\right.\)
Vậy...