so sánh 5^22 với 2^64
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


S=1+2+22+...+29�=1+2+22+...+29
2S=2(1+2+22+...+210)2�=2(1+2+22+...+210)
2S=2+22+23+...+292�=2+22+23+...+29
2S−S=(2+22+23+...+210)−(1+2+22+...+29)2�−�=(2+22+23+...+210)−(1+2+22+...+29)
\(S=2^{10}-1=2^2.2^8-1=4.2^8-1
HT
S=1+2+22+...+29�=1+2+22+...+29
2S=2(1+2+22+...+210)2�=2(1+2+22+...+210)
2S=2+22+23+...+292�=2+22+23+...+29
2S−S=(2+22+23+...+210)−(1+2+22+...+29)2�−�=(2+22+23+...+210)−(1+2+22+...+29)
\(S=2^{10}-1=2^2.2^8-1=4.2^8-1

em nên gõ công thức trực quan để được hỗ trợ tốt nhất nhé
D = \(\dfrac{1}{7^2}\) - \(\dfrac{2}{7^3}\) + \(\dfrac{3}{7^4}\) - \(\dfrac{4}{7^5}\) +........+ \(\dfrac{201}{7^{202}}\) - \(\dfrac{202}{7^{203}}\)
7 \(\times\) D = \(\dfrac{1}{7}\) - \(\dfrac{2}{7^2}\) + \(\dfrac{3}{7^3}\) - \(\dfrac{4}{7^4}\) + \(\dfrac{5}{7^5}\) -.......- \(\dfrac{202}{7^{202}}\)
7D +D = \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -.........-\(\dfrac{1}{7^{202}}\) - \(\dfrac{202}{7^{203}}\)
D = ( \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -.........-\(\dfrac{1}{7^{202}}\) - \(\dfrac{202}{7^{203}}\)) : 8
Đặt B = \(\dfrac{1}{7}\) - \(\dfrac{1}{7^2}\) + \(\dfrac{1}{7^3}\) - \(\dfrac{1}{7^4}\) + \(\dfrac{1}{7^5}\) -........+\(\dfrac{1}{7^{201}}\).-\(\dfrac{1}{7^{202}}\)
7 \(\times\) B = 1 - \(\dfrac{1}{7}\)+\(\dfrac{1}{7^2}\) - \(\dfrac{1}{7^3}\) + \(\dfrac{1}{7^4}\) - \(\dfrac{1}{7^5}\) +.........- \(\dfrac{1}{7^{201}}\)
7B + B = 1 - \(\dfrac{1}{7^{202}}\)
B = ( 1 - \(\dfrac{1}{7^{202}}\)) : 8
D = [ ( 1 - \(\dfrac{1}{7^{202}}\)): 8 - \(\dfrac{202}{7^{203}}\)] : 8
D = \(\dfrac{1}{64}\) - \(\dfrac{1}{64.7^{202}}\) - \(\dfrac{202}{7^{203}.8}\) < \(\dfrac{1}{64}\)

8(%7#2;3786(23#;8%7;23#?3#](?;32%78(23;%(3*2;]34((46(;13846(1;58]63#;?%]3;?85?;3]%68%63(#8%,8632;6%]3;6?%8%,3]?8%23#;8%3#2;%68((14?+^#]?&$%3]3#;(+3]4}](#^&?+(:^?%+(},]?%]}^^?,}#]?,#6?*6*3,#3,](6,(6,3]?73%,]7?%]83#?87%3#,?7%,]?7%3#],?%+78)76}#,^*],)#+/(#})(#]}]7?3#68]7}#(])}7+)](^]74(3+)(+7/4?}(*@?/3#?7^{%79{}7^?#/})7},#(7?:%#?:%*)7#6}?/+?+(7^,;{*?%;{,?+?%^{},?+{#,/%?^&]{#,?,]{?^+3(?^&%3/?(+,3/?^%+?+^#/%3^?}%+#/%?^}?&?%}&#/,?%^+#?}/^+7(}7#+/6?)/}#+76)#/?}7+#/}??7+%/}#??{7#}+%?{,+}#^8^kết quả là *,%^*^#,#61?*%*^^?,#^?%$ chúc bạn học giỏi nhe :)))
Bằng 5^57/7,71 cách giải 12:0,1+7/^1-729=5^57/7,71
5^57/7,71-3:3x2+2:4=5^57/7,71
Chúc bạn học giỏi nhe :)))) 👍👍👍👍👍👍👍👍👍

\(2^{64}>2^{63}=\left(2^7\right)^9=128^9\)
\(5^{22}< 5^{24}=\left(5^3\right)^8=125^8< 128^8< 128^9\)
\(\Rightarrow2^{64}>5^{22}\)