tìm n thuộc N, biết:
(n+1)3=(n+1)2
(n-1)8=(n-1)5 (n>hoặc bằng 1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(N=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)
\(N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)
Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)
A < \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(=1-\frac{1}{n}< 1\)( vì n \(\ge\)2 )
\(\Rightarrow N=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< \frac{1}{2^2}.1=\frac{1}{4}\)
Vậy \(N< \frac{1}{4}\)
b) \(P=\frac{2!}{3!}+\frac{2!}{4!}+\frac{2!}{5!}+...+\frac{2!}{n!}\)
\(P=2!\left(\frac{1}{3!}+\frac{1}{4!}+\frac{1}{5!}+...+\frac{1}{n!}\right)\)
\(P< 2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{\left(n-1\right).n}\right)\)
\(P< 2.\left(\frac{1}{2}-\frac{1}{n}\right)=1-\frac{2}{n}< 1\)
Vậy \(P< 1\)
nhanh lên nhé các bạn trả lời nhanh và đúng thì mình tích cho
Bài 3
a) Ta có: n+3=n-1+4
Để n+3 chia hết n-1 thì 4 phải chia hết cho n-1 hay n-1 thuộc Ư(4)={1;2;4;-1;-2;-4}
=> n thuộc {2;3;5;0;-1;-3}
Vậy n thuộc {2;3;5;-1;-3}
b) Ta có 2n-1=2.(n+1)-3
Để 2n-1 chia hết cho n+1 thì 3 phải chia hết cho n+1 hay n+1 thuộc Ư(3)={1;2;3;-1;-2;-3}
=> n thuộc {0;1;2;-2;-3;-4}
Vậy n thuộc {0;1;2;-2;;-3;-4}
c) Ta có 12 chia hết n,48 chia hết n => n thuộc ƯC(12;48)
12=2^2 . 3
48=2^4 . 3
ƯCLN(12;48)=2^2 . 3=12
=> n thuộc ƯC(12;48}=Ư(12)={1;-1;2;-2;3;-3;4;-4;6;-6;12;-12}
Vậy..
d)Ta có n chia hết cho -6,n chia hết cho 8 => n thuộc BC(-6;8)={..;-72;-48;-24;0;24;48;72;..}
Mà -50< hoặc n và n > hoặc = 50 nên n thuộc {-48;-24;0;24;48}
Vậy..
Ta có: \(1+2+3+...+n=\dfrac{n\left(n+1\right)}{2}\)
Gọi ƯCLN(\(\dfrac{n\left(n+1\right)}{2}\),\(2n+1\))=d
Ta có: \(\dfrac{n\left(n+1\right)}{2}⋮d\)\(\Leftrightarrow\dfrac{4n\left(n+1\right)}{2}⋮d\Leftrightarrow2n\left(n+1\right)⋮d\Leftrightarrow2n^2+2n⋮d\)
Lại có: \(\left(2n+1\right)⋮d\Leftrightarrow n\left(2n+1\right)⋮d\Leftrightarrow2n^2+n⋮d\)
\(\Rightarrow\left(2n^2+2n\right)-\left(2n^2+n\right)⋮d\)\(\Leftrightarrow n⋮d\)
\(\Leftrightarrow2n⋮d\)
Mà \(\left(2n+1\right)⋮d\)\(\Leftrightarrow1⋮d\)
=> Đpcm
(n+1)^3=(n+1)^2(phải là n-1,nếu để thế này thi n=rỗng)
n=rỗng
(n-1)^8=(n-1)^5
n=1