K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 3 2022

\(f\left(x_1+x_2\right)=f\left(x_1\right)+f\left(x_2\right)\)

\(\Rightarrow a\left(x_1+x_2\right)+b=ax_1+b+ax_2+b\)

\(\Rightarrow a\left(x_1+x_2\right)+b=a\left(x_1+x_2\right)+2b\)

\(\Rightarrow b=2b\)

\(\Rightarrow2b-b=0\Rightarrow b=0\)

11 tháng 5 2021

\(x^2+ax+b+1=0\)

\(\Delta=a^2-4b-4\)

Để pt có 2 nghiệm pb \(\Leftrightarrow\Delta>0\Leftrightarrow a^2-4b-4>0\)

Theo hệ thức Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=-a\\x_1.x_2=b+1\end{cases}}\)

Ta có: \(\hept{\begin{cases}x_1-x_2=3\\x_1^3-x_2^3=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=3\\\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=9\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=3\\x_1^2+x_1x_2+x_2^2=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=3\\\left(x_1-x_2\right)^2+3x_1x_2=3\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=3\\x_1x_2=-2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x_1=3+x_2\\\left(3+x_2\right)x_2=-2\left(1\right)\end{cases}}\)

\(\left(1\right)\Leftrightarrow x_2^2+3x_2+2=0\)

\(\Delta=1\)

\(\Rightarrow\)pt có 2 nghiệm pb \(\orbr{\begin{cases}x_2=\frac{-3+1}{2}=-1\Rightarrow x_1=2\\x_2=\frac{-3-1}{2}=-2\Rightarrow x_1=1\end{cases}}\)

TH1: \(x_1=2;x_2=-1\)

\(\Rightarrow\hept{\begin{cases}a=-1\\b=-3\end{cases}}\)( LOẠI vì a^2 -4b-4 <0 )

TH2: \(x_1=1;x_2=-2\)

\(\Rightarrow\hept{\begin{cases}a=1\\b=-3\end{cases}}\)( tm )

VẬY ...

9 tháng 6 2020

Ta có: P(x1 + x2) = a(x1 + x2) + b = ax1 + ax2 + b

P(x1) + P(x2) = ax1 + b + ax2 + b = ax1 + ax2 + 2b 

Để P(x1 + x2) = P(x1) + P(x2) thì ax1 + ax2 + b = ax1 + ax2 + 2b 

=> b = 2b => b - 2b = 0 =>  -b = 0 => b = 0

Vậy khi b = 0 , a \in {\mathbb  R} thì đẳng thức P(x1 + x2) = P(x1) + P(x2

25 tháng 4 2017

Ta có :

\(P\left(x_1+x_2\right)=a.\left(x_1+x_2\right)+b\)

\(P\left(x_1\right)+P\left(x_2\right)=a.x_1+b+a.x_2+b=a\left(x_1+x_2\right)+2b\)

Theo đề bài ta có \(a\left(x_1+x_2\right)+b=a\left(x_1+x_2\right)+2b\). Lấy VP - VT, ta được b = 0

Như vậy với b = 0 và mọi số thực A thì \(P\left(x_1+x_2\right)=P\left(x_1\right)+P\left(x_2\right)\)

12 tháng 4 2022

\(P\left(x\right)-Q\left(x\right)=x^2+ax+b-x^2-cx-d=x\left(a-c\right)+b-d\)

\(P\left(x_1\right)-Q\left(x_1\right)=x_1\left(a-c\right)+b-d=0\) (1)

\(P\left(x_2\right)-Q\left(x_2\right)=x_2\left(a-c\right)+b-d=0\) (2)

-Từ (1) và (2) suy ra:

\(x_1\left(a-c\right)=x_2\left(a-c\right)\)

-Vì \(x_1\ne x_2\Rightarrow a-c=0\Rightarrow a=c\Rightarrow b=d\)

-Vậy \(P\left(x\right)=Q\left(x\right)\forall x\)

 

25 tháng 3 2022

Giả sử x1,x2 là 2 nghiệm phân biệt của đa thức P(x)=ax2+bx+c trong đó a khác 0,c khác 0.Hãy tìm nghiệm của đa thức             Q(x)=cx2+bx+a theo x1,x2

undefined