Cho tam giác ABC trung tuyến AM .Chứng minh \(AC^2+AC^2=2AM^2+\dfrac{BC^2}{2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.



Sửa đề: \(AB^2+AC^2=2AM^2+\frac{BC^2}{2}\)
ΔAHC vuông tại H
=>\(AC^2=AH^2+HC^2\)
ΔAHB vuông tại H
=>\(AB^2=AH^2+HB^2\)
\(AB^2+AC^2=AH^2+HB^2+AH^2+HC^2\)
\(=2\cdot AH^2+HB^2+HC^2\)
\(=2HA^2+\left(HM+MB\right)^2+\left(MC-MH\right)^2\)
\(=2HA^2+\left(HM+MB\right)^2+\left(MB-MH\right)^2\)
\(=2HA^2+HM^2+MB^2+2\cdot HM\cdot MB+HM^2+MB^2-2\cdot HM\cdot MB\)
\(=2HA^2+2\cdot HM^2+2\cdot MB^2=2\cdot\left(HA^2+HM^2\right)+2\cdot MB^2\)
\(=2\cdot AM^2+2\cdot\left(\frac{BC}{2}\right)^2=2\cdot AM^2+2\cdot\frac{BC^2}{4}=2\cdot AM^2+\frac{BC^2}{2}\)

Sửa đề: \(AB^2+AC^2=2AM^2+\frac{BC^2}{2}\)
ΔAHC vuông tại H
=>\(AC^2=AH^2+HC^2\)
ΔAHB vuông tại H
=>\(AB^2=AH^2+HB^2\)
\(AB^2+AC^2=AH^2+HB^2+AH^2+HC^2\)
\(=2\cdot AH^2+HB^2+HC^2\)
\(=2HA^2+\left(HM+MB\right)^2+\left(MC-MH\right)^2\)
\(=2HA^2+\left(HM+MB\right)^2+\left(MB-MH\right)^2\)
\(=2HA^2+HM^2+MB^2+2\cdot HM\cdot MB+HM^2+MB^2-2\cdot HM\cdot MB\)
\(=2HA^2+2\cdot HM^2+2\cdot MB^2=2\cdot\left(HA^2+HM^2\right)+2\cdot MB^2\)
\(=2\cdot AM^2+2\cdot\left(\frac{BC}{2}\right)^2=2\cdot AM^2+2\cdot\frac{BC^2}{4}=2\cdot AM^2+\frac{BC^2}{2}\)

a: \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
\(\Leftrightarrow AB^2+AC^2-BC^2=2\cdot AB\cdot AC\cdot cosA\)
\(\Leftrightarrow BC^2=AB^2+AC^2-2\cdot AB\cdot AC\cdot cosA\)
b:

Xét ΔABC có AM là đường trung tuyến
nên \(AM^2=\dfrac{2\left(AB^2+AC^2\right)-BC^2}{4}\)
\(\Leftrightarrow2\left(AB^2+AC^2\right)-BC^2=4\cdot AM^2\)
\(\Leftrightarrow2\left(AB^2+AC^2\right)=4\cdot AM^2+BC^2\)
=>\(AB^2+AC^2=2\cdot AM^2+\dfrac{1}{2}BC^2\)