Chứng minh rằng
\(\sqrt{14}-\sqrt{13}< 2\sqrt{3}-\sqrt{11}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. \(VT=\sqrt{14+2\sqrt{13}}-\sqrt{14-2\sqrt{13}}\)
=\(\sqrt{\left(\sqrt{13}+1\right)^2}-\sqrt{\left(\sqrt{13}-1\right)^2}=\sqrt{13}+1-\left(\sqrt{13}-1\right)\)
\(=\sqrt{13}+1-\sqrt{13}+1=2=VP\left(đpcm\right)\)
b. \(VT=\sqrt{7+4\sqrt{3}}-\sqrt{5-2\sqrt{6}}-\sqrt{2}\)
\(=\sqrt{\left(2+\sqrt{3}\right)^2}-\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}-\sqrt{2}\)
\(=2+\sqrt{3}-\left(\sqrt{3}-\sqrt{2}\right)-\sqrt{2}=2+\sqrt{3}-\sqrt{3}+\sqrt{2}-\sqrt{2}\)
\(=2=VP\left(đpcm\right)\)
\(\left(\sqrt{12+2\sqrt{14+2\sqrt{13}}-\sqrt{12+2\sqrt{11}}}\right)\left(\sqrt{11}+\sqrt{3}\right)\)
\(\left(\sqrt{12+2\sqrt{14+2\sqrt{13}}}-\sqrt{12+2\sqrt{11}}\right)\left(\sqrt{11}+\sqrt{13}\right)\)
\(=\left(\sqrt{12+2\sqrt{\left(\sqrt{13+1}\right)^2}}-\sqrt{\left(\sqrt{11+1}\right)^2}\right)\left(\sqrt{11}+\sqrt{13}\right)\)
\(=\left(\sqrt{12+2\sqrt{13+2}}-\sqrt{11}-1\right)\left(\sqrt{11}+\sqrt{13}\right)\)
\(=\left(\sqrt{\left(\sqrt{13}+1\right)^2}-\sqrt{11}-1\right)\left(\sqrt{11}+\sqrt{13}\right)\)
\(=\left(\sqrt{13}+1-\sqrt{11}-1\right)\left(\sqrt{11}+\sqrt{13}\right)\)\(=\left(\sqrt{13}-\sqrt{11}\right)\left(\sqrt{11}+\sqrt{13}\right)=13-11=2\)
Đặt B = \(1+\dfrac{1}{\sqrt{2}}+\dfrac{1}{\sqrt{3}}+...+\dfrac{1}{\sqrt{50}}\)
= \(1+2\left(\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}+...+\dfrac{1}{2\sqrt{50}}\right)\)
Đặt \(A=\dfrac{1}{2\sqrt{2}}+\dfrac{1}{2\sqrt{3}}+...+\dfrac{1}{2\sqrt{50}}\)
Xét A < \(\dfrac{1}{\sqrt{1}+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{49}+\sqrt{50}}\)
=> A < \(\dfrac{\sqrt{2}-\sqrt{1}}{1}+\dfrac{\sqrt{3}-\sqrt{2}}{1}+...+\dfrac{\sqrt{50}-\sqrt{40}}{1}\)
=> A < -1 + \(\sqrt{50}\)
=> 2A < -2 + \(10\sqrt{2}\)
=> 2A + 1 = B < -2 + \(10\sqrt{2}\) + 1
=> B < -1 + \(10\sqrt{2}\) < \(10\sqrt{2}\) (1)
Xét \(\dfrac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-\sqrt{n}\right)\)
=> \(\dfrac{1}{\sqrt{1}}>2\left(\sqrt{2}-\sqrt{1}\right)\)
\(\dfrac{1}{\sqrt{2}}>2\left(\sqrt{3}-\sqrt{2}\right)\)
\(\dfrac{1}{\sqrt{3}}>2\left(\sqrt{4}-\sqrt{3}\right)\)
...
\(\dfrac{1}{\sqrt{50}}>2\left(\sqrt{51}-\sqrt{50}\right)\)
=> B > 2(\(\sqrt{51}-\sqrt{1}\))
=> B >-2 + \(10\sqrt{2}\) > \(5\sqrt{2}\)
Cảm ơn bạn nha. Mà bạn bị nhầm 49 thành 40 ở dòng thứ 5 đó.
\(\sqrt{14}-\sqrt{13}< 2\sqrt{3}-\sqrt{11}\)
\(\Leftrightarrow\sqrt{14}-\sqrt{13}< \sqrt{12}-\sqrt{11}\)
\(\Leftrightarrow\sqrt{14}+\sqrt{11}< \sqrt{12}+\sqrt{13}\)
\(\Leftrightarrow14+11+2\sqrt{14.11}< 12+13+2\sqrt{12.13}\)
\(\Leftrightarrow25+2\sqrt{154}< 25+2\sqrt{156}\)
\(\Leftrightarrow\sqrt{154}< \sqrt{156}\)(luôn đúng)
Vậy \(\sqrt{14}-\sqrt{13}< 2\sqrt{3}-\sqrt{11}\)