K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 8 2018

\(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

AH
Akai Haruma
Giáo viên
29 tháng 8 2019

Lời giải:

Áp dụng BĐT AM-GM:

\(ab\leq \frac{(a+b)^2}{4}; bc\leq \frac{(b+c)^2}{4}; ca\leq \frac{(c+a)^2}{4}\). Do đó:

\(\frac{ab}{c^2+3}+\frac{bc}{a^2+3}+\frac{ac}{b^2+3}\leq \frac{1}{4}\underbrace{\left(\frac{(a+b)^2}{c^2+3}+\frac{(b+c)^2}{a^2+3}+\frac{(c+a)^2}{b^2+3}\right)}_{M}(*)\)

Lại có, từ $a^2+b^2+c^2=3$ và áp dụng BĐT Cauchy-Schwarz suy ra:

\(M=\frac{(a+b)^2}{(a^2+c^2)+(b^2+c^2)}+\frac{(b+c)^2}{(a^2+b^2)+(a^2+c^2)}+\frac{(c+a)^2}{(b^2+a^2)+(b^2+c^2)}\)

\(\leq \frac{a^2}{a^2+c^2}+\frac{b^2}{b^2+c^2}+\frac{b^2}{a^2+b^2}+\frac{c^2}{a^2+c^2}+\frac{c^2}{b^2+c^2}+\frac{a^2}{b^2+a^2}\)

\(\Leftrightarrow M\leq \frac{a^2+b^2}{a^2+b^2}+\frac{b^2+c^2}{b^2+c^2}+\frac{c^2+a^2}{c^2+a^2}=3(**)\)

Từ \((*); (**)\Rightarrow \text{VT}\leq \frac{3}{4}\) (đpcm)

Dấu "=" xảy ra khi $a=b=c=1$

30 tháng 8 2019

\(VT=\Sigma\frac{ab}{\left(a^2+c^2\right)+\left(b^2+c^2\right)}\le\frac{1}{2}.\Sigma\frac{ab}{\sqrt{a^2+c^2}.\sqrt{b^2+c^2}}\le\frac{1}{4}\left(\Sigma\frac{a^2}{a^2+c^2}+\Sigma\frac{b^2}{b^2+c^2}\right)=\frac{3}{4}\)

(tắt tí ạ, ko chắc)

12 tháng 8 2018

1) \(ab\left(a+b\right)-bc\left(b+c\right)+ac\left(a-c\right)\)

\(=ab\left(a+b\right)-b^2c-bc^2+a^2c-ac^2\)

\(=ab\left(a+b\right)-c\left(b^2-a^2\right)-c^2\left(a+b\right)\)

\(=ab\left(a+b\right)-c\left(a+b\right)\left(a-b\right)-c^2\left(a+b\right)\)

\(=\left(a+b\right)\left(ab-ac+bc-c^2\right)\)

\(=\left(a+b\right)\left[a\left(b-c\right)+c\left(b-c\right)\right]\)

\(=\left(a+b\right)\left(b-c\right)\left(a+c\right)\)

22 tháng 7 2017

ab(a+b)+bc(b+c)+ca(c+a)+3abc

=(ab(a+b)+abc)+(bc(b+c)+abc)+(ca(c+a)+abc)

=ab(a+b+c)+bc(b+c+a)+ca(c+a+b)

=(a+b+c)(ab+bc+ca)

3 tháng 9 2016

\(1.VP\)

\(\left(a+b\right)^2-2ab=a^2+2ab+b^2-2ab\)

\(=a^2+b^2=VT\left(DPCM\right)\)

3 tháng 9 2016

1/  (a + b)2 - 2ab = a2 + 2ab + b2 - 2ab = a2 + b2 + (2ab - 2ab) = a2 + b2

2/  (a2 + b2)2 - 2a2b2 = a4 + 2a2b2 + b4 - 2a2b2 = a4 + b4 + (2a2b2 - 2a2b2) = a4 + b4

5 tháng 10 2018

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

b,

Ta có:

\(\left(a+b+c\right)^3=0\Rightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(\Rightarrow a^3+b^3+c^3-3.\left(-c\right)\left(-a\right)\left(-b\right)=0\)

28 tháng 8 2015

a2+b2+c2=ab+ac+bc

<=>2a2+2b2+2c2=2ab+2ac+2bc

<=>a2-2ab+b2+a2-2ac+c2+b2-2bc=0

<=>(a-b)2+(a-c)2+(b-c)2=0

<=>a-b=0 và a-c=0 và b-c=0

<=>a=b=c

4 tháng 4 2016

1)a + b + c = 0 
<=> (a + b + c)² = 0 
<=> a² + b² + c² + 2(ab + bc + ca) = 0 
<=> a² + b² + c² = -2(ab + bc + ca) ------------(1) 

CẦn chứng minh: 

2(a^4 + b^4 + c^4) = (a² + b² + c²)² 

<=> 2(a^4 + b^4 + c^4) = a^4 + b^4 + c^4 + 2(a²b² + b²c² + c²a²) 

<=> a^4 + b^4 + c^4 = 2(a²b² + b²c² + c²a²) 

<=> (a² + b² + c²)² = 4(a²b² + b²c² + c²a²) ---(cộng 2 vế cho 2(a²b² + b²c² + c²a²) ) 

<=> [-2(ab + bc + ca)]² = 4(a²b² + b²c² + c²a²) ----(do (1)) 

<=> 4.(a²b² + b²c² + c²a²) + 8.(ab²c + bc²a + a²bc) = 4(a²b² + b²c² + c²a²) 

<=> 8.(ab²c + bc²a + a²bc) = 0 

<=> 8abc.(a + b + c) = 0 

<=> 0 = 0 (đúng), Vì a + b + c = 0 

=> Đpcm

2Quy đồng hết lên là ra thui :) . Đặt thế này cho dễ : x = a/b , y = b/c , z = c/a => xyz = 1 

BĐT cần Cm <=> x² + y² + z² ≥ 1/x + 1/y + 1/z 

<=> x² + y² + z² ≥ xy + yz + zx ( BĐT quen thuộc đây mà ) 

<=> 2(x² + y² + z² ) - 2(xy + yz + zx) ≥ 0 

<=> (x - y)² + (y - z)² + (z - x)² ≥ 0 ( Luon dung ) => DPCM 

Dấu = xảy ra <=> x = y = z <=> a = b = c 

Vậy a²/b² + b²/c² + c²/a² ≥ c/b + b/a + a/c . Dấu = xảy ra <=> x = y = z <=> a = b = c 

- - - - - - - - - - - - -- - - - - -

17 tháng 11 2021

Ta có

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{bc+ac+ab}{abc}=0\Rightarrow ab+bc+ac=0.\)

\(A=\frac{\left(bc\right)^3+\left(ac\right)^3+\left(ab\right)^3}{\left(abc\right)^2}\)

Ta có

\(\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3-3\left(abc\right)^2=\)

\(=\left(ab+bc+ac\right)\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2-abbc-bcac-abac\right]=0\)

\(\Rightarrow\left(ab\right)^3+\left(bc\right)^3+\left(ac\right)^3=3\left(abc\right)^2\)

\(\Rightarrow A=\frac{3\left(abc\right)^2}{\left(abc\right)^2}=3\)