Cho \(x+\sqrt{3}=2\)
Tính \(B=x^5-3x^4-3x^3+6x^2-20x+2022\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1: \(x+\sqrt{3}=2\Rightarrow x-2=-\sqrt{3}\Rightarrow\left(x-2\right)^2=3\Rightarrow x^2-4x+1=0\)
\(B=x^5-3x^4-3x^3+6x^2-20x-2022\)
\(=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+5\left(x^2-4x+1\right)+2017\)
\(=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2017\)
\(=2017\)
dễ nên mình đặt link câu a cho : https://olm.vn/hoi-dap/detail/189000873419.html
tí mình gửi qua tin nhắn nhé !
Đặt \(A=\sqrt{3+\sqrt{5+2\sqrt{3}}}+\sqrt{3-\sqrt{5+2\sqrt{3}}}\)
\(=6+2\sqrt{9-\left(5+2\sqrt{3}\right)}=6+2\sqrt{3+2\sqrt{3}+1}\)
\(=6+2\left(3+1\right)=6+6+2=14\)
Nên biểu thức tương đương với \(14-\sqrt{3}\)
\(\Leftrightarrow x=2-\sqrt{3}\)
Dễ thấy x là nghiệm của PT \(x^2-4x+1\)
\(H=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2019\\ H=\left(x^2-4x+1\right)\left(x^3+x^2+5\right)+2019\\ H=2019\)
Ta có: \(x=2-\sqrt{3}\)\(\Rightarrow2-x=\sqrt{3}\)\(\Rightarrow\left(2-x\right)^2=3\)\(\Rightarrow4-4x+x^2=3\)\(\Rightarrow x^2-4x+1=0\)
Lại có: \(B=x^5-3x^4-3x^3+6x^2-20x+2018\)
\(\Rightarrow B=x^5-4x^4+x^4+x^3-4x^3+5x^2+x^2+20x+5+2013\)
\(\Rightarrow B=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2013\)
\(\Rightarrow B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2013\)
\(\Rightarrow B=x^3\cdot0+x^2\cdot0+5\cdot0+2013=2013\)
b) Ta có: \(x+\sqrt{3}=2\Leftrightarrow x-2=-\sqrt{3}\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow x^2-4x+1=0\)
\(B=x^5-3x^4-3x^3+6x^2-20x+2021\)
\(B=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2016\)
\(B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2016\)
Thế \(x^2-4x+1=0\)\(\Rightarrow B=2016.\)
\(x+\sqrt{3}=2\Rightarrow\sqrt{3}=2-x\Rightarrow3=\left(2-x\right)^2\Rightarrow x^2-4x+1=0\)
Ta có:
\(B=x^5-4x^4+x^4-4x^3+x^3+5x^2+x^2-20x+5+2013\)
\(\Rightarrow B=x^5-4x^4+x^3+x^4-4x^3+x^2+5x^2-20x+5+2013\)
\(\Rightarrow B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2013\)
\(\Rightarrow B=x^3.0+x^2.0+5.0+2013=2013\)
\(x+\sqrt{3}=2\Leftrightarrow x-2=-\sqrt{3}\Leftrightarrow\left(x-2\right)^2=3\)
\(\Leftrightarrow x^2-4x+1=0\)
ta có : \(P=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2013=2013\)
Ta có: \(x+\sqrt{3}=2\Leftrightarrow\left(x-2\right)^2=3\Leftrightarrow x^2-4x+1=0\)
\(B=x^5-3x^4-3x^3+6x^2-20x+2022\)
\(B=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2017\)
\(B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2017\)
\(B=2017\)(Do \(x^2-4x+1=0\))
ĐS: ...