K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 8 2018

Lời giải:

Đặt \(\sqrt[3]{a}=x; \sqrt[3]{b}=y\). Khi đó ta có $x^3+y^3=2$ và cần chứng minh \(0< x+y\leq 2\).

Thật vậy.

Ta thấy: \(x^3+y^3=2>0\)

\(\Leftrightarrow (x+y)(x^2-xy+y^2)>0(1)\)

\(x^2-xy+y^2=(x-\frac{y}{2})^2+\frac{3y^2}{4}\geq 0(2)\)

Từ $(1)$ và $(2)$ suy ra \(x+y>0\)

Lại có:

\(4(x^3+y^3)-(x+y)^3=3(x^3+y^3)-3(x^2y+xy^2)\)

\(=3[x^2(x-y)-y^2(x-y)]=3(x-y)^2(x+y)\)

Vì $x+y>0$ (cmt) và $(x-y)^2\geq 0$ nên \(4(x^3+y^3)-(x+y)^3\geq 0\)

\(\Rightarrow 4(x^3+y^3)\geq (x+y)^3\) hay \(8\geq (x+y)^3\Rightarrow x+y\leq 2\)

Ta có đpcm.

28 tháng 4 2019

Hmm , bài này trông quen quen , trong cuốn "các bài giảng về bđt Cô-si" của Phạm Văn Hùng ; Nguyễn Vũ Lương , Nguyễn Ngọc Thắng thì phải . Mình đọc rồi mà quên mất tiêu =( Để nghĩ lại coi nha

28 tháng 4 2019

Bạn ơi , mình không có quyển đó,  bạn cố nhớ lại giúp mình với , huhu , thứ 6 là mình phải nộp rồi

13 tháng 10 2017

Chứng minh: 

\(2\left(\sqrt{a}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}\)

\(\Leftrightarrow2\left(\sqrt{b+1}-\sqrt{b}\right)< \frac{1}{\sqrt{b}}\)

\(\Leftrightarrow\frac{2}{\sqrt{b+1}+\sqrt{b}}< \frac{1}{\sqrt{b}}\)

\(\Leftrightarrow2\sqrt{b}< \sqrt{b+1}+\sqrt{b}\)

\(\Leftrightarrow\sqrt{b}< \sqrt{b+1}\)(đúng)

Cái còn lại tương tự