Bài 7*: Chứng minh rằng 1+3+3^2+ 3^3+...+ 3^2000 chia hết cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1+3+3^2+3^3+.....+3^1999+3^2000
A=(1+3+3^2)+(3^3+3^4+3^5)+.....+(3^1998+3^1999+3^2000)
A=(1+3+3^2)+3^3(1+3+3^2)+.....+3^1998.(1+3+3^2)
A=1.13+3^3.13+...+3^1998.13
A=13.(1+3^3+...+3^1998)
=>A chia hết cho 13
Vậy....
Hok tốt!
Hoàng Huy
\(A=1+3^2+3^3+....+3^{2000}\)
\(A=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+.....+\left(3^{1998}+3^{1999}+3^{2000}\right)\)
\(A=\left(1+3+3^2\right)+3^3\times\left(1+3+3^2\right)+....+3^{1998}\times\left(1+3+3^2\right)\)
\(A=13+3^3\times13+3^{1998}\times13\)
\(A=13\times\left(1+3^3+....+3^{1998}\right)⋮13\)
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\left(2+...+2^{19}\right)⋮7\)
a: \(A=2\left(1+2+2^2\right)+...+2^{19}\left(1+2+2^2\right)\)
\(=7\cdot\left(2+...+2^{19}\right)⋮7\)
A = 1 + 3 + 32 + 33 + ... + 31999 + 32000
= (1 + 3 + 32) + (33 + 34 + 35) + ..... (31998 + 31999 + 32000)
= (1 + 3 + 32) + 33(1 + 3 + 32) + .... + 31998(1 + 3 + 32)
= 13 + 33 . 13 + .... 31998 . 13
= 13 . (1 + 33 + .... 31998) chia hết cho 13 (ĐPCM)