K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2018

874863

27 tháng 8 2018

1) \(\frac{x}{3}\)\(\frac{y}{4}\)\(\frac{y}{5}\) =\(\frac{z}{7}\) và 2x + 3y -z

Ta có:\(\frac{x}{15}\) = \(\frac{y}{20}\)\(\frac{y}{20}\)  = \(\frac{z}{28}\)

Theo tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}\)  =  \(\frac{y}{20}\)  =  \(\frac{z}{28}\)  = \(\frac{2x}{30}\)\(\frac{3y}{60}\) = \(\frac{2x+3y-z}{30+60-28}\) = \(\frac{124}{62}\) = 2

\(\Rightarrow\)\(\hept{\begin{cases}\frac{x}{15}=2\\\frac{y}{20}=2\\\frac{z}{28}=2\end{cases}}\)           \(\Leftrightarrow\)\(\hept{\begin{cases}x=30\\y=40\\z=54\end{cases}}\)

              Vậy ( x;y;z) = (30;40;54)

11 tháng 8 2016

1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)

\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)

=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

=>\(x=3\cdot20=60\)

    \(y=3\cdot24=72\)

    \(z=3\cdot21=63\)

11 tháng 8 2016

3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)

=> \(x=1\cdot15=15\)

     \(y=1\cdot7=7\)

     \(z=1\cdot3=3\)

     \(t=1\cdot1=1\)

30 tháng 3 2018

Ta có : x+y=1/2=>x=1/2-y

y+z=1/3=>z=1/3-y

=>x-z=1/2-y-1/3+y=1/2-1/3-(y-y)=1/6

Vậy x = (1/6+1/4):2=5/24

z = (1/4-1/6):2=1/24

=> y = 1/3-1/24=7/24

29 tháng 9 2016

Đăng từng bài thôi chứ bạn

29 tháng 9 2016

mất công lém

16 tháng 2 2019

Đặt \(\frac{x}{6}=\frac{y}{-4}=\frac{z}{3}=m\)

\(\Rightarrow x=6m,y=-4m,z=3m\left(1\right)\)

Thay (1) vào\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)

Ta có \(\frac{1}{6m}+\frac{-1}{4m}+\frac{1}{3m}=3\)

\(\Rightarrow\frac{2}{12m}+\frac{-3}{12m}+\frac{4}{12m}=3\)

\(\Rightarrow\frac{2+\left(-3\right)+4}{12m}=3\)

\(\Rightarrow\frac{3}{12m}=3\Rightarrow\frac{1}{4m}=3\)

\(\Rightarrow12m=1\Rightarrow m=\frac{1}{12}\)

Với \(m=\frac{1}{12}\Rightarrow x=6.\frac{1}{12}=\frac{1}{2}\)

                            \(y=-4.\frac{1}{12}=\frac{-1}{3}\)

                            \(z=3.\frac{1}{12}=\frac{1}{4}\)

28 tháng 8 2015

bạn đúng đề:

\(\frac{x-5}{3}=\frac{y-4}{4}=\frac{z-3}{5}=\frac{x-5+y-4+z-3}{3+4+5}=\frac{36}{12}=3\)

\(\frac{x-5}{3}=3=\frac{x}{3}=3=9\Rightarrow x-5=9=14\Rightarrow x=14\)

\(\frac{y-4}{4}=3=\frac{y}{4}=3=12\Rightarrow y-4=12\Rightarrow16\)=> y=16

\(\frac{z-3}{5}=3=\frac{z}{5}=3=15\Rightarrow z-3=15=18\Rightarrow z=18\)

10 tháng 8 2019

Câu 1,

x+y=-1/3 ; y+z=5/4 ; x+z= 4/3

=> 2(x+y+z)=9/4

=> x+y+z=9/8

Ta lại có: x+y=-1/3

=> z=9/8 -(-1/3)=35/24

Ta lại có: z+y=5/4

=> y=-5/24

=> x=.....

Câu 2:

\(-4\le x\le-\frac{11}{18}\)

a) \(\frac{1}{2}-|\frac{5}{4}-2x|=\frac{1}{3}\Leftrightarrow|\frac{5}{4}-2x|=\frac{1}{2}-\frac{1}{3}=\frac{1}{6}\)

\(\Leftrightarrow\orbr{\begin{cases}\frac{5}{4}-2x=\frac{1}{6}\\\frac{5}{4}-2x=-\frac{1}{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}2x=\frac{5}{4}-\frac{1}{6}=\frac{13}{12}\\2x=\frac{5}{4}+\frac{1}{6}=\frac{17}{12}\end{cases}}}\)

Tự làm nốt và kết luận 

b) \(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)

\(\Leftrightarrow\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}-\frac{x+1}{13}-\frac{x+1}{14}=0\)

\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)=0\)

Vì \(\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}+\frac{1}{14}\right)\ne0\forall x\Rightarrow x+1=0\Leftrightarrow x=-1\)

Vậy ....

27 tháng 9 2016

Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

\(=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)

Áp dụng tính chất của dãy tỉ số = nhau ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+9-4}=\frac{2x+3y-z-2-6+3}{9}\)

                                                                    \(=\frac{50-5}{9}=\frac{45}{9}=5\)

\(\Rightarrow\begin{cases}x-1=5.2=10\\y-2=5.3=15\\z-3=5,4=20\end{cases}\)\(\Rightarrow\begin{cases}x=11\\y=17\\z=23\end{cases}\)

Vậy x = 11; y = 17; z = 23

27 tháng 9 2016

Giải:

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-\left(2+6-3\right)}{9}\)

\(=\frac{50-5}{9}=\frac{45}{9}=5\)

+) \(\frac{x-1}{2}=5\Rightarrow x-1=10\Rightarrow x=11\)

+) \(\frac{y-2}{3}=5\Rightarrow y-2=15\Rightarrow y=17\)

+) \(\frac{z-3}{4}=5\Rightarrow z-3=20\Rightarrow z=23\)

Vậy bộ số \(\left(x,y,z\right)\) là \(\left(11,17,23\right)\)

4 tháng 7 2017

Bài 1: \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}\)

=>\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}\)

Áp dụng tính chất của dãy tỉ số bằng nhau: \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2z}{18}=\frac{3y}{36}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\)

=>x=27;z=36;z=60

Bài 2: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\Rightarrow xy=2k.5k=10k^2=40\Rightarrow k^2=4\Rightarrow\hept{\begin{cases}k=-2\\k=2\end{cases}}\)

+)k=-2 => x=-4;y=-5

+)k=2 => x=4;y=5

Vậy x=-4;y=-5 hoặc x=4;y=5