Rút gọn:
A= \(\left(\dfrac{1}{2\sqrt{x}-1}-\dfrac{2\sqrt{x}}{4x-1}\right):\dfrac{1}{8x-4\sqrt{x}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{1}{x-1}\cdot5\sqrt{3}\cdot\left|x-1\right|\cdot\sqrt{x-1}\)
\(=\dfrac{5\sqrt{3}}{x-1}\cdot\left(x-1\right)\cdot\sqrt{x-1}=5\sqrt{3}\cdot\sqrt{x-1}\)
b: \(B=10\sqrt{x}-3\cdot\dfrac{10\sqrt{x}}{3}-\dfrac{4}{x}\cdot\dfrac{x\sqrt{x}}{2}\)
\(=10\sqrt{x}-10\sqrt{x}-\dfrac{4\sqrt{x}}{2}=-2\sqrt{x}\)
c: \(C=x-4+\left|x-4\right|\)
=x-4+x-4
=2x-8
a) Ta có: \(A=\left(\dfrac{1}{\sqrt{a}+2}+\dfrac{1}{\sqrt{a}-2}\right):\dfrac{\sqrt{a}}{a-4}\)
\(=\dfrac{\sqrt{a}-2+\sqrt{a}+2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\cdot\dfrac{\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\sqrt{a}}\)
=2
b) Ta có: \(B=\left(\dfrac{4x}{\sqrt{x}-1}-\dfrac{\sqrt{x}-2}{x-3\sqrt{x}+2}\right)\cdot\dfrac{\sqrt{x}-1}{x^2}\)
\(=\dfrac{4x-1}{\sqrt{x}-1}\cdot\dfrac{\sqrt{x}-1}{x^2}\)
\(=\dfrac{4x-1}{x^2}\)
\(A=1-\left(\dfrac{2}{1+2\sqrt{x}}-\dfrac{5\sqrt{x}}{4x-1}-\dfrac{1}{1-2\sqrt{x}}\right):\dfrac{\sqrt{x}-1}{4x+4\sqrt{x}+1}\)
\(A=1-\dfrac{2\left(2\sqrt{x}-1\right)-5\sqrt{x}+\left(2\sqrt{x}+1\right)}{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}:\dfrac{\sqrt{x}-1}{\left(2\sqrt{x}+1\right)^2}\)
\(A=1-\dfrac{4\sqrt{x}-2-5\sqrt{x}+2\sqrt{x}+1}{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}\cdot\dfrac{\left(2\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)
\(A=1-\dfrac{\sqrt{x}-1}{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}\cdot\dfrac{\left(2\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)
\(A=1-\dfrac{2\sqrt{x}+1}{2\sqrt{x}-1}=\dfrac{2\sqrt{x}-1-2\sqrt{x}-1}{2\sqrt{x}-1}=\dfrac{-2}{2\sqrt{x}-1}\)
Tick hộ nha
a) \(P=\dfrac{x^2+3x}{x^2-8x+16}:\left(\dfrac{x+4}{x}+\dfrac{1}{x-4}+\dfrac{19-x^2}{x^2-4x}\right)\left(x\ne0,x\ne4\right)\)
\(=\dfrac{x^2+3x}{\left(x-4\right)^2}:\left(\dfrac{x+4}{x}+\dfrac{1}{x-4}+\dfrac{19-x^2}{x\left(x-4\right)}\right)\)
\(=\dfrac{x^2+3x}{\left(x-4\right)^2}:\dfrac{\left(x+4\right)\left(x-4\right)+x+19-x^2}{x\left(x-4\right)}\)
\(=\dfrac{x^2+3x}{\left(x-4\right)^2}:\dfrac{x+3}{x\left(x-4\right)}=\dfrac{x\left(x+3\right)}{\left(x-4\right)^2}.\dfrac{x\left(x-4\right)}{x+3}=\dfrac{x^2}{x-4}\)
b) \(x=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}-\sqrt{\left(\sqrt{3}-1\right)^2}\)
\(=\sqrt{3}+1-\sqrt{3}+1=2\)
\(\Rightarrow P=\dfrac{2^2}{2-4}=-2\)
a)\(ĐKXĐ:\left\{{}\begin{matrix}x\left(x-4\right)\ne0\\\dfrac{x+4}{x}+\dfrac{1}{x-4}+\dfrac{19-x^2}{x^2-4x}\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ne4\\x\ne0\\x\ne-3\end{matrix}\right.\)
\(P=\dfrac{x\left(x+3\right)}{\left(x-4\right)}:\left(\dfrac{x^2-16+x+19-x^2}{x\left(x-4\right)}\right)=\dfrac{x\left(x+3\right)}{\left(x-4\right)^2}.\left(\dfrac{x\left(x-4\right)}{x+3}\right)=\dfrac{x^2}{x-4}\)
b)\(x=\sqrt{4+2\sqrt{3}}-\sqrt{4-2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3+1}-\left(\sqrt{3}-1\right)=2\)
thay x=2 vào P ta có \(P=\dfrac{2^2}{2-4}=-2\)
a: \(=\dfrac{4x-8\sqrt{x}+8x}{x-4}:\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{4\sqrt{x}\left(3\sqrt{x}-2\right)}{x-4}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{-\sqrt{x}+3}=\dfrac{-4x\left(3\sqrt{x}-2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)
b: \(m\left(\sqrt{x}-3\right)\cdot B>x+1\)
=>\(-4xm\left(3\sqrt{x}-2\right)>\left(\sqrt{x}+2\right)\cdot\left(x+1\right)\)
=>\(-12m\cdot x\sqrt{x}+8xm>x\sqrt{x}+2x+\sqrt{x}+2\)
=>\(x\sqrt{x}\left(-12m-1\right)+x\left(8m-2\right)-\sqrt{x}-2>0\)
Để BPT luôn đúng thì m<-0,3
Ta có: \(P=\left(\dfrac{4\sqrt{x}}{\sqrt{x}+2}+\dfrac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{1}{2\sqrt{x}}\right)\)
\(=\dfrac{4\sqrt{x}\left(\sqrt{x}-2\right)+8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}:\dfrac{2\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)}{2\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{8x-8\sqrt{x}+8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{2\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}-2-\sqrt{x}+2}\)
\(=\dfrac{16x-8\sqrt{x}}{\sqrt{x}+2}\cdot\dfrac{2\sqrt{x}}{\sqrt{x}}\)
\(=\dfrac{2\left(16-8\sqrt{x}\right)}{\sqrt{x}+2}\)
\(=\dfrac{32-16\sqrt{x}}{\sqrt{x}+2}\)
Ta có: \(P=\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
\(=\left(\dfrac{4\sqrt{x}\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}+\dfrac{8x}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{2\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
\(=\dfrac{8\sqrt{x}-8x+8x}{\left(\sqrt{x}+2\right)\left(2-\sqrt{x}\right)}:\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(=\dfrac{-8\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\)
\(=\dfrac{8x}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}\)
ta có : \(P=\left(\dfrac{4\sqrt{x}}{2+\sqrt{x}}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{x-2\sqrt{x}}-\dfrac{2}{\sqrt{x}}\right)\)
=\(\left(\dfrac{4\sqrt{x}\left(2-\sqrt{x}\right)}{4-x}+\dfrac{8x}{4-x}\right):\left(\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\dfrac{2\left(\sqrt{x}-x\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\right)\)
=\(\dfrac{8\sqrt{x}-4x+8x}{4-x}:\dfrac{\sqrt{x}-1-2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
=\(\dfrac{8\sqrt{x}+4x}{4-x}:\dfrac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x-2}\right)}\) =\(\dfrac{4\sqrt{x}\left(2+\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}:\dfrac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
=\(\dfrac{4\sqrt{x}}{2-\sqrt{x}}:\dfrac{3-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\) =\(\dfrac{4x\left(\sqrt{x}-2\right)}{\left(2-\sqrt{x}\right)\left(3-\sqrt{x}\right)}\)
=\(-\dfrac{4x\left(2-\sqrt{x}\right)}{\left(2-\sqrt{x}\right)\left(3-\sqrt{x}\right)}\) =\(-\dfrac{4x}{3-\sqrt{x}}\) =\(\dfrac{4x}{\sqrt{x}-3}\)
này mới đúng !!
điều kiện xác định : \(x\ge0;x\ne\dfrac{1}{4}\)
ta có : \(A=\left(\dfrac{1}{2\sqrt{x}-1}-\dfrac{2\sqrt{x}}{4x-1}\right):\dfrac{1}{8x-4\sqrt{x}}\)
\(\Leftrightarrow A=\left(\dfrac{1}{2\sqrt{x}-1}-\dfrac{2\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}\right):\dfrac{1}{4\sqrt{x}\left(2\sqrt{x}-1\right)}\)
\(\Leftrightarrow A=\left(\dfrac{2\sqrt{x}+1-2\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(2\sqrt{x}+1\right)}\right).\dfrac{4\sqrt{x}\left(2\sqrt{x}-1\right)}{1}\)
\(\Leftrightarrow A=\dfrac{4\sqrt{x}}{2\sqrt{x}+1}\)