x/10 =y/7 = z/23 và 2x +y -z =12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{x}{5}=\frac{y}{4}=\frac{z}{7}=\frac{2y}{8}=\frac{x+2y+z}{5+8+7}=\frac{40}{20}=2\)
\(\Rightarrow x=10;y=8;z=14\)
b
Áp dụng tính chất dãy tỉ số bằng nhau,ta có:
\(\frac{x}{10}=\frac{y}{7}=\frac{z}{23}=\frac{2x}{20}=\frac{2x+y-z}{20+7-23}=\frac{12}{4}=3\)
\(\Rightarrow x=30;y=21;z=69\)
a)Theo tính chất tỉ lệ thức:
\(\frac{x}{5}\)=\(\frac{y}{4}\)=\(\frac{z}{7}\)=\(\frac{x+2y+z}{5+2.4+7}\)=\(\frac{40}{20}\)=2
Do đó x=2.5=10
y=2.4=8
z=2.7=14
b)Cũng theo tính chất tỉ lệ thức:
\(\frac{x}{10}\)=\(\frac{y}{7}\)=\(\frac{z}{23}\)=\(\frac{2x+y-z}{2.10+7-23}\)=\(\frac{12}{4}\)=3
Do vậy:x=3.10=30
y=3.7=21
z=3.23=69
\(\frac{x}{10}=\frac{y}{7}=\frac{z}{23}\Rightarrow\frac{x}{10}=\frac{y}{7}=\frac{z}{23}=\frac{2x+y-z}{20+7-23}=\frac{12}{4}=3\)
\(\Rightarrow x=30;y=21;z=69\)
a,Áp dụng t/c dãy tỉ số bằng nhau
\(\frac{x}{10}=\frac{y}{7}=\frac{z}{23}=\frac{2x+y-z}{20+7-23}=\frac{12}{4}=3\)
\(x=30;y=21;z=69\)
b, Theo bài ra ta có :
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{14}=\frac{y}{21}\)(*)
\(\frac{y}{7}=\frac{z}{4}\Rightarrow\frac{y}{21}=\frac{z}{12}\)(**)
Từ (*) ; (**) ta có : \(\frac{x}{14}=\frac{y}{21}=\frac{z}{12}\)
Áp dung t/c dãy tỉ số bằng nhau
\(\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)
\(x=42;y=63;z=36\)
Bài giải
a, Áp dụng tính chất dãy tỉ số bằng nhau, ta có :
\(\frac{x}{10}=\frac{y}{7}=\frac{z}{23}=\frac{2x}{20}=\frac{2x+y-z}{20+7-23}=\frac{12}{4}=3\)
\(\Rightarrow\hept{\begin{cases}x=3\cdot10=30\\y=3\cdot7=21\\z=3\cdot23=69\end{cases}}\)
Vậy \(\left(x\text{ ; }y\text{ ; }z\right)=\left(30\text{ ; }21\text{ ; }69\right)\)
b, Ta có :
\(\frac{x}{2}=\frac{y}{3}\text{ }\Rightarrow\text{ }\frac{x}{14}=\frac{y}{21}\)
\(\frac{y}{7}=\frac{z}{4}\text{ }\Rightarrow\text{ }\frac{y}{21}=\frac{z}{12}\)
\(\Rightarrow\text{ }\frac{x}{14}=\frac{y}{21}=\frac{z}{12}=\frac{x+y-z}{14+21-12}=\frac{69}{23}=3\)
( Áp dụng tính chất dãy tỉ số bằng nhau )
\(\Rightarrow\hept{\begin{cases}x=3\cdot14=42\\y=3\cdot21=63\\z=3\cdot12=36\end{cases}}\)
Vậy \(\left(x\text{ ; }y\text{ ; }z\right)=\left(42\text{ ; }63\text{ ; }36\right)\)
Bài 1:
Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) có:
\(A=\left|x-2018\right|+\left|x-1\right|=\left|2018-x\right|+\left|x-1\right|=\left|2018-x+x-1\right|=2017\)
Dấu " = " khi \(\left\{{}\begin{matrix}2018-x\ge0\\x-1\ge0\end{matrix}\right.\Rightarrow1\le x\le2018\)
Vậy MIN A = 2017 khi \(1\le x\le2018\)
Bài 2:
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{x}{10}=\dfrac{y}{7}=\dfrac{z}{23}=\dfrac{2x}{20}=\dfrac{y}{7}=\dfrac{z}{23}=\dfrac{2x+y-z}{4}=\dfrac{12}{4}=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=30\\y=21\\z=69\end{matrix}\right.\)
Vậy...
a) Theo đề bài, ta có:
\(\frac{x}{11}=\frac{y}{12};\frac{y}{3}=\frac{z}{7}\)
\(\Rightarrow\frac{x}{11}=\frac{y}{12};\frac{y}{3.4}=\frac{z}{7.4}\)
\(\Rightarrow\frac{x}{11}=\frac{y}{12};\frac{y}{12}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{11}=\frac{y}{12}=\frac{z}{28}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x}{11}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{2.11-12+28}=\frac{152}{38}=4\)
Tự làm tiêp snha bạn
Câu b tương tự
a)
Ta có:
\(\frac{y}{3}=\frac{z}{7}\Leftrightarrow\frac{y}{12}=\frac{z}{28}\Rightarrow\frac{x}{11}=\frac{y}{12}=\frac{z}{28}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{11}=\frac{y}{12}=\frac{z}{28}\Leftrightarrow\frac{2x}{22}=\frac{y}{12}=\frac{z}{28}=\frac{2x-y+z}{22-12+28}=\frac{152}{38}=4\)
Suy ra \(x=11\cdot4=44;y=12\cdot4=48;z=28\cdot4=112\)
b)
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
Suy ra \(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
Do đó: \(x=8\cdot2=16;y=12\cdot2=24;z=15\cdot2=30\)
chúc bạn học tốt!
Answer:
a) Áp dụng tính chất tỉ số bằng nhau
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{2x-y+z}{2.2-3+5}=\frac{12}{6}=2\)
\(\Rightarrow\frac{x}{2}=2\Rightarrow x=4\)
\(\Rightarrow\frac{y}{3}=2\Rightarrow y=6\)
\(\Rightarrow\frac{z}{5}=2\Rightarrow z=10\)
b) Ta có:
\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x}{8}=\frac{y}{12}\)
\(\frac{y}{4}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{15}\)
\(\Rightarrow\frac{x}{8}=\frac{y}{12}=\frac{z}{15}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x}{8}=\frac{y}{12}=\frac{z}{15}=\frac{x+y-z}{8+12-15}=\frac{10}{5}=2\)
\(\Rightarrow\frac{x}{8}=2\Rightarrow x=16\)
\(\Rightarrow\frac{y}{12}=2\Rightarrow y=24\)
\(\Rightarrow\frac{z}{15}=2\Rightarrow z=30\)
\(\frac{x}{10}=\frac{y}{7}=\frac{z}{23}\) và \(2x+y-z=12\)
Đặt : \(\frac{x}{10}=\frac{y}{7}=\frac{z}{23}=k\)
\(\Rightarrow\hept{\begin{cases}x=10k\left(1\right)\\y=7k\left(2\right)\\z=23k\left(3\right)\end{cases}}\)
Lại có : \(2x+y-z=12\left(4\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\)và \(\left(4\right)\)suy ra :
\(2.10k+7k-23k=12\)
\(20k+7k-23k=12\)
\(4k=12\)
\(k=3\)
Thay \(k=3\)vào \(\left(1\right),\left(2\right),\left(3\right)\)ta được :
\(\Rightarrow\hept{\begin{cases}x=10.3=30\\y=7.3=21\\z=23.3=69\end{cases}}\)
Vậy ...................