Cho \(\Delta ABC\) nhọn có \(\text{ AB=2AC.}cos\widehat{A}\). Chứng minh \(\Delta ABC\) cân
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
lkjhgfgy6tyur65445676t 7 777676r64576556756777777777777/.,mnbvfggjhyjuhjtyj324345
Xét ΔABC có
\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
\(\Leftrightarrow\dfrac{AB}{2AC}=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
\(\Leftrightarrow AB^2=AB^2+AC^2-BC^2\)
=>CA=CB
=>ΔCAB cân tại C
a: Xét ΔAEB và ΔAEF có
AE chung
\(\widehat{BAE}=\widehat{FAE}\)
AB=AF
Do đó: ΔAEB=ΔAEF
b: Sửa đề: Chứng minh MB=MF
Ta có: ΔABE=ΔAFE
=>AB=AF
=>ΔABF cân tại A
Ta có: ΔABF cân tại A
mà AM là đường phân giác
nên M là trung điểm của BF và AM\(\perp\)BF
M là trung điểm của BF nên MB=MF
AM\(\perp\)BF tại M
=>AE\(\perp\)BF tại M
c: ta có: ΔABE=ΔAFE
=>\(\widehat{ABE}=\widehat{AFE}\)
Ta có: \(\widehat{ABE}+\widehat{DBE}=180^0\)(hai góc kề bù)
\(\widehat{AFE}+\widehat{CFE}=180^0\)(hai góc kề bù)
mà \(\widehat{ABE}=\widehat{AFE}\)
nên \(\widehat{EBD}=\widehat{EFC}\)
Ta có: AB+BD=AD
AF+FC=AC
mà AB=AF và AD=AC
nên BD=FC
Xét ΔEBD và ΔEFC có
EB=EF
\(\widehat{EBD}=\widehat{EFC}\)
BD=FC
Do đó: ΔEBD=ΔEFC
=>ED=EC
=>E nằm trên đường trung trực của DC(1)
ta có: AD=AC
=>A nằm trên đường trung trực của DC(2)
Ta có: KD=KC
=>K nằm trên đường trung trực của DC(3)
Từ (1),(2),(3) suy ra A,E,K thẳng hàng
A B C N I O M 1 1 2
a,
\(\text{Xét ∆MOB và ∆NOI có }\):
\(\text{MO = NO (gt) }\)
\(\text{ BO = OI (gt) }\)
\(\widehat{MOB}=\widehat{NOI}\)\(\text{(2 góc đối đỉnh) }\)
\(\Rightarrow\text{∆MOB = ∆NOI }\left(c.g.c\right)\)
b,
\(\text{ Vì ∆MOB = ∆NOI ( câu a) }\)
\(\Rightarrow\text{ MB = NI }\)
\(\text{BM = CN }\)
\(\Rightarrow\text{ NI = NC }\)
=>\(\text{∆NIC là ∆ cân }\)
c, \(\text{Vì ∆MOB = ∆NOI ( câu a) }\)
=> \(\widehat{B_1}=\widehat{C_1}\)
\(\text{Mà 2 góc ở vị trí so le trong }\)
=>\(\text{ BM // NI }\)
=> \(\text{AB // NI }\)
=> \(\widehat{BAN}=\widehat{ANI}\) hay \(\widehat{BAC}=\widehat{ANI}\) (1)
\(\text{mà}\) \(\widehat{ANI}\)\(\text{là góc ngoài ∆INC }\)
=> \(\widehat{ANI}\)= \(\widehat{I_2}+\widehat{IC}N\)
\(\text{Vì ∆NIC cân }\)=> \(\widehat{I_2}=\widehat{ICN}\)
=> \(\widehat{ANI}=2\widehat{I_2}\) (2)
Từ 1,2 => \(\widehat{BAC}=2\widehat{I_2}\)
hay \(\widehat{BAC}=2\widehat{NIC}\)
Xét ΔABC có \(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
\(\Leftrightarrow\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{AB}{2\cdot AC}\)
\(\Leftrightarrow AB^2+AC^2-BC^2=AB^2\)
=>CB=CA
hay ΔCAB cân tại C
a) Nối A và D lại, ta đc: ΔABD & ΔADC
Ta có: D là trung điểm BC => BD=DC
Xét ΔABD & ΔADC có:
AB=AC(gt) ; BD=DC ; AD=AD
=> ΔADB = ΔADC
1a. Xét △ABD và △ACD có:
\(AB=BC\left(gt\right)\)
\(\hat{BAD}=\hat{CAD}\left(gt\right)\)
\(AD\) chung
\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)
b/ Từ a suy ra \(BD=CD\) (hai cạnh tương ứng).
2a. Xét △ABD và △EBD có:
\(AB=BE\left(gt\right)\)
\(\hat{ABD}=\hat{EBD}\left(gt\right)\)
\(BD\) chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)
b/ Từ a suy ra \(\hat{DEB}=90^o\) (góc tương ứng với góc A).
c/ Xét △ABI và △EBI có:
\(AB=BE\left(gt\right)\)
\(\hat{ABI}=\hat{EBI}\left(do\text{ }\hat{ABD}=\hat{EBD}\right)\)
\(BI\) chung
\(\Rightarrow\Delta ABI=\Delta EBI\left(c.g.c\right)\)
\(\Rightarrow\hat{AIB}=\hat{EIB}=\dfrac{180^o}{2}=90^o\)
Vậy: \(BD\perp AE\)
\(cosA=\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}\)
\(\Leftrightarrow\dfrac{AB^2+AC^2-BC^2}{2\cdot AB\cdot AC}=\dfrac{AB}{2\cdot AC}\)
\(\Leftrightarrow AB^2+AC^2-BC^2=AB^2\)
=>AC=BC
=>ΔCAB can tại C