K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2018

Đặt \(A=x^2+x+1\)

\(=x^2+2\cdot\frac{1}{2}\cdot x+\left(\frac{1}{2}\right)^2+\frac{3}{4}\)

\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu " = " xảy ra khi và chỉ khi

\(\left(x+\frac{1}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{1}{2}=0\)

\(\Leftrightarrow x=-\frac{1}{2}\)

vậy \(A_{min}=\frac{3}{4}\) tại \(x=-\frac{1}{2}\)

20 tháng 8 2018

\(x^2+x+1=x^2+2.x.\frac{1}{2}+\left(\frac{1}{2}\right)^2+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\)

Vì \(\left(x+\frac{1}{2}\right)^2\ge\left(\forall x\right)\Rightarrow\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x+\frac{1}{2}\right)^2=0\Leftrightarrow x+\frac{1}{2}=0\Leftrightarrow x=\frac{-1}{2}\)

Vậy GTNN của x2 + x + 1 bằng 3/4 khi và chỉ khi x = -1/2

2 tháng 10 2023

a) Sửa đề: Tìm GTNN

A = |2x - 1| - 4

Ta có:

|2x - 1| ≥ 0 với mọi x ∈ R

⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R

Vậy GTNN của A là -4 khi x = 1/2

b) B = 1,5 - |2 - x|

Ta có:

|2 - x| ≥ 0 với mọi x ∈ R

⇒ -|2 - x| ≤ 0 với mọi x ∈ R

⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R

Vậy GTLN của B là 1,5 khi x = 2

c) C = |x - 3| ≥ 0 với mọi x ∈ R

Vậy GTNM của C là 0 khi x = 3

d) D = 10 - 4|x - 2|

Ta có:

|x - 2| ≥ 0 với mọi x ∈ R

⇒ 4|x - 2| ≥ 0 với mọi x ∈ R

⇒ -4|x - 2| ≤ 0 với mọi x ∈ R

⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R

Vậy GTLN của D là 10 khi x = 2

26 tháng 6 2019

\(A=x-x^2+\frac{1}{2}\)

\(\Leftrightarrow A=-\left(x^2-x-\frac{1}{2}\right)\)

\(\Leftrightarrow A=-\left(x^2-2.\frac{1}{2}x+\frac{1}{4}-\frac{3}{4}\right)\)

\(\Leftrightarrow A=-\left[\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\right]\)

Ta có: \(\left(x-\frac{1}{2}\right)^2\ge0\)nên \(A=-\left[\left(x-\frac{1}{2}\right)^2-\frac{3}{4}\right]\le\frac{3}{4}\)

Vậy \(A_{min}=\frac{3}{4}\)(Dấu "="\(\Leftrightarrow x=\frac{1}{2}\))

26 tháng 6 2019

\(A_{max}=\frac{3}{4}\)nhé

\(A=\dfrac{\left(x+1\right)^2+2+7}{\left(x+1\right)^2+2}=1+\dfrac{7}{\left(x+1\right)^2+2}< =1+\dfrac{7}{2}=\dfrac{9}{2}\)

Dấu = xảy ra khi x=-1

\(C\ge-7\forall x\)

Dấu '=' xảy ra khi x=-1/2

16 tháng 1 2022

Có c>=0-7=-7 xảy ra khi x=-1/2

Các dạng bài này ko có giới hạn x thì ko tìm dc gtln đâu nhé 

30 tháng 10 2016

(x-1)(x-2)(x-3)(x-4)+15

=(x2-5x+4)(x2-5x+6)+15

Đặt t=x2-5x+4 ta có:

t(t+2)+15=t2+2t+15

=t2+2t+1+14=(t+1)2+14\(\ge\)14

Dấu = khi t=-1 => x2-5x+4=-1 =>x=\(\frac{5\pm\sqrt{5}}{2}\)

Vậy....

14 tháng 8 2020

Đặt:     \(A=\left(x-3\right)\left(x+3\right)+2\left(2x+1\right)^2\)

=>       \(A=x^2-9+2\left(4x^2+4x+1\right)\)

=>       \(A=x^2-9+8x^2+8x+2\)

=>       \(A=9x^2+8x-7\)

=>       \(A=\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\)

Có:      \(\left(3x+\frac{4}{3}\right)^2\ge0\forall x\Rightarrow\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\ge-\frac{79}{9}\)

=>      \(A\ge-\frac{79}{9}\)

DẤU "=" XẢY RA <=>     \(\left(3x+\frac{4}{3}\right)^2=0\)

<=>     \(x=-\frac{4}{9}\)

Vậy A min =     \(-\frac{79}{9}\)      <=>       \(x=-\frac{4}{9}\)

15 tháng 8 2020

( x - 3 )( x + 3 ) + 2( 2x + 1 )2

= x2 - 9 + 2( 4x2 + 4x + 1 )

= x2 - 9 + 8x2 + 8x + 2

= 9x2 + 8x - 7

= 9x2 + 8x + 16/9 - 79/9

= ( 3x + 4/3 )2 - 79/9

\(\left(3x+\frac{4}{3}\right)^2\ge0\forall x\Rightarrow\left(3x+\frac{4}{3}\right)^2-\frac{79}{9}\ge-\frac{79}{9}\)

Dấu " = " xảy ra <=> 3x + 4/3 = 0 => x = -4/9

=> GTNN của biểu thức = -79/9 <=> x =  -4/9

11 tháng 2 2022

\(Q=-5\left|x+\frac{1}{2}\right|+2021\le2021\forall x\)

Dấu ''='' xảy ra khi x = -1/2 

Vậy GTLN của Q là 2021 khi x = -1/2 

\(C=\frac{5}{3}\left|x-2\right|+2\ge2\forall x\)

Dấu ''='' xảy ra khi x = 2 

Vậy GTNN của C là 2 khi x = 2