Tìm GTNN của M=\(x-\sqrt{x-3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\dfrac{x+6\sqrt{x}+9+25}{\sqrt{x}+3}=\dfrac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\)Áp dụng Cô si có
\(M\ge2\sqrt{\left(\sqrt{x}+3\right).\dfrac{25}{\sqrt{x}+3}}=10\)
Dấu "=" \(\sqrt{x}+3=\dfrac{25}{\sqrt{x}+3}\leftrightarrow x=4\)
Vậy GTNN của M = 10 <=> x = 4
\(M=\dfrac{\left(x+6\sqrt{x}+9\right)+25}{\sqrt{x}+3}=\dfrac{\left(\sqrt{x}+3\right)^2+25}{\sqrt{x}+3}=\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\)
Do \(\sqrt{x}\ge0\Rightarrow\left\{{}\begin{matrix}\sqrt{x}+3>0\\\dfrac{25}{\sqrt{x}+3}>0\end{matrix}\right.\)
Áp dụng bđt cô-si ta có:
\(\sqrt{x}+3+\dfrac{25}{\sqrt{x}+3}\ge2\sqrt{\left(\sqrt{x}+3\right)\cdot\dfrac{25}{\sqrt{x}+3}}=2\sqrt{25}=10\)
hay \(M\ge10\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}+3=\dfrac{25}{\sqrt{x}+3}\Leftrightarrow x=4\)
Vậy GTNN của M = 10 khi x = 4
a: \(M-\dfrac{3}{2}=\dfrac{x+7}{\sqrt{x}+3}-\dfrac{3}{2}\)
\(=\dfrac{2x+14-3\sqrt{x}-9}{2\left(\sqrt{x}+3\right)}\)
\(=\dfrac{2x-3\sqrt{x}+5}{2\left(\sqrt{x}+3\right)}>0\)
=>M>3/2
b: \(M=\dfrac{x-9+16}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}\)
\(=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\cdot\sqrt{\dfrac{16}{\sqrt{x}+3}\cdot\left(\sqrt{x}+3\right)}-6=2\cdot4-6=2\)
Dấu = xảy ra khi (căn x+3)^2=16
=>căn x+3=4
=>x=1
ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x< >4\end{matrix}\right.\)
\(M=A\cdot B=\dfrac{x}{\sqrt{x}-2}\cdot\dfrac{\sqrt{x}-2}{\sqrt{x}+2}\)
=>\(M=\dfrac{x}{\sqrt{x}+2}\)
=>\(M=\dfrac{x-4+4}{\sqrt{x}+2}=\sqrt{x}-2+\dfrac{4}{\sqrt{x}+2}\)
=>\(M=\sqrt{x}+2+\dfrac{4}{\sqrt{x}+2}-4\)
=>\(M>=2\cdot\sqrt{\left(\sqrt{x}+2\right)\cdot\dfrac{4}{\sqrt{x}+2}}-4=0\)
Dấu '=' xảy ra khi \(\sqrt{x}+2=\sqrt{4}=2\)
=>\(\sqrt{x}=0\)
=>x=0(nhận)
a: M=A:B
\(=\dfrac{x+\sqrt{x}+10-\sqrt{x}-3}{x-9}\cdot\dfrac{\sqrt{x}-3}{1}=\dfrac{x+7}{\sqrt{x}+3}\)
b: \(M=\dfrac{x-9+16}{\sqrt{x}+3}=\sqrt{x}-3+\dfrac{16}{\sqrt{x}+3}\)
=>\(M=\sqrt{x}+3+\dfrac{16}{\sqrt{x}+3}-6>=2\sqrt{16}-6=2\)
Dấu = xảy ra khi (căn x+3)^2=16
=>căn x+3=4
=>x=1
Đặt \(2\sqrt{x+1}+\sqrt{4-x}=t\Rightarrow t^2-4=3x+4+4\sqrt{-x^2+3x+4}\)
Ta có:
\(2\sqrt{x+1}+\sqrt{4-x}\le\sqrt{\left(4+1\right)\left(x+1+4-x\right)}=5\)
\(\sqrt{x+1}+\sqrt{x+1}+\sqrt{4-x}\ge\sqrt{x+1}+\sqrt{x+1+4-x}\ge\sqrt{5}\)
\(\Rightarrow\sqrt{5}\le t\le5\)
Phương trình trở thành:
\(t^2-4=mt\) \(\Leftrightarrow f\left(t\right)=t^2-mt-4=0\)
\(ac=-4< 0\Rightarrow pt\) luôn có 2 nghiệm trái dấu (nghĩa là đúng 1 nghiệm dương)
Vậy để pt có nghiệm thuộc \(\left[\sqrt{5};5\right]\Rightarrow x_1< \sqrt{5}\le x_2\le5\)
\(\Rightarrow f\left(\sqrt{5}\right).f\left(5\right)\le0\)
\(\Rightarrow\left(1-\sqrt{5}m\right)\left(21-5m\right)\le0\)
\(\Rightarrow\dfrac{\sqrt{5}}{5}\le m\le\dfrac{21}{5}\)
2.
Chắc đề đúng là "tìm m để giá trị nhỏ nhất của hàm số đạt giá trị lớn nhất"
Hàm bậc 2 có \(a=2>0\Rightarrow y_{min}=-\dfrac{\Delta}{4a}=-\dfrac{9\left(m+1\right)^2-8\left(m^2+3m-2\right)}{8}=-\dfrac{m^2-6m+25}{8}\)
\(\Rightarrow y_{min}=-\dfrac{1}{8}\left(m-3\right)^2-2\le-2\)
Dấu "=" xảy ra khi \(m-3=0\Rightarrow m=3\)
ĐKXĐ: \(x\ge-2;x\ne-1\)
\(M=\dfrac{x^2-2x}{x^3+1}+\dfrac{1}{2}\left(\dfrac{1-\sqrt{x+2}+1+\sqrt{x+2}}{1-\left(x+2\right)}\right)\)
\(=\dfrac{x^2-2x}{\left(x+1\right)\left(x^2-x+1\right)}-\dfrac{1}{x+1}=\dfrac{x^2-2x-\left(x^2-x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(=\dfrac{-\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=-\dfrac{1}{x^2-x+1}\)
\(M=-\dfrac{1}{\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}}\ge-\dfrac{1}{\dfrac{3}{4}}=-\dfrac{4}{3}\)
\(M_{min}=-\dfrac{4}{3}\) khi \(x=\dfrac{1}{2}\)
TXĐ: x>= 3
M = (x-3) - 2.1/2\(\sqrt{x-3}\)+ 1/4 - 1/4 +3 = (\(\sqrt{x-3}\)-1/2)^2 +11/4 >= 11/4 với mọi x thuộc TXĐ
GTNN M = 11/4