Tìm GTNN của bthuc
A=9x2 + 18x-20
B=m2+10m+1
C=25x2-20x+30
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=25x^2-20x+7\)
\(\Leftrightarrow A=\left(5x-2\right)^2+3\ge3\)
Dấu " = " xảy ra \(\Leftrightarrow5x-2=0\Leftrightarrow x=\frac{2}{5}\)
Vậy \(minA=3\Leftrightarrow x=\frac{2}{5}\)
\(B=-x^2+2x-2\)
\(\Leftrightarrow B=-\left(x^2-2x+1\right)-3\)
\(\Leftrightarrow B=-\left(x-1\right)^2-3\le-3\)
Dấu " = " xảy ra \(\Leftrightarrow x=1\)
Vậy \(maxB=-3\Leftrightarrow x=1\)
\(C=9x^2-12x\)
\(\Leftrightarrow C=\left(9x^2-12x+4\right)-4\)
\(\Leftrightarrow C=\left(3x-2\right)^2-4\ge-4\)
Dấu " = " xảy ra \(\Leftrightarrow3x-2=0\Leftrightarrow x=\frac{2}{3}\)
Vậy \(minC=-4\Leftrightarrow x=\frac{2}{3}\)
\(D=3-10x^2-4xy-4y^2\)
\(\Leftrightarrow D=-\left(4y^2+4xy+x^2+9x^2\right)-3\)
\(\Leftrightarrow D=-\left[\left(2y-x\right)^2+3x^2\right]-3\le-3\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}2y-x=0\\3x^2=0\end{cases}\Leftrightarrow}\hept{\begin{cases}y=0\\x=0\end{cases}}\)
Vậy \(maxD=-3\Leftrightarrow x=y=0\)
\(E=4x-x^2+1\)
\(\Leftrightarrow E=-\left(x^2-4x+4\right)+5\)
\(\Leftrightarrow E=-\left(x-2\right)^2+5\le5\)
Dấu " = " xảy ra \(\Leftrightarrow x=2\)
Vậy \(maxE=5\Leftrightarrow x=2\)
a) Ta có: \(25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)
b) Ta có: \(9x^2-6x+2\)
\(=9x^2-6x+1+1\)
\(=\left(3x-1\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)
c) Ta có: \(-x^2+2x-2\)
\(=-\left(x^2-2x+2\right)\)
\(=-\left(x^2-2x+1+1\right)\)
\(=-\left(x-1\right)^2-1\le-1\forall x\)
Dấu '=' xảy ra khi x-1=0
hay x=1
d) Ta có: \(x^2+12x+39\)
\(=x^2+12x+36+3\)
\(=\left(x+6\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=-6
e) Ta có: \(-x^2-12x\)
\(=-\left(x^2+12x+36-36\right)\)
\(=-\left(x+6\right)^2+36\le36\forall x\)
Dấu '=' xảy ra khi x=-6
f) Ta có: \(4x-x^2+1\)
\(=-\left(x^2-4x-1\right)\)
\(=-\left(x^2-4x+4-5\right)\)
\(=-\left(x-2\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=2
a) Ta có: \(25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{2}{5}\)
b) Ta có: \(9x^2-6x+2\)
\(=9x^2-6x+1+1\)
\(=\left(3x-1\right)^2+1\ge1\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{3}\)
c) Ta có: \(-x^2+2x-2\)
\(=-\left(x^2-2x+2\right)\)
\(=-\left(x^2-2x+1+1\right)\)
\(=-\left(x-1\right)^2-1\le-1\forall x\)
Dấu '=' xảy ra khi x=1
( Mình trình bày mẫu câu a các câu khác mình làm tắt lại nhưng tương tự trình bày câu a nha )
a, Ta có : \(25x^2-20x+7=\left(5x\right)^2-2.5x.2+2^2+3\)
\(=\left(5x-2\right)^2+3\)
Thấy : \(\left(5x-2\right)^2\ge0\forall x\in R\)
\(\Rightarrow\left(5x-2\right)^2+3\ge3\forall x\in R\)
Vậy \(Min=3\Leftrightarrow5x-2=0\Leftrightarrow x=\dfrac{2}{5}\)
b, \(=9x^2-2.3x+1+1=\left(3x-1\right)^2+1\ge1\)
Vậy Min = 1 <=> x = 1/3
c, \(=-x^2+2x-1-1=-\left(x^2-2x+1\right)-1=-\left(x-1\right)^2-1\le-1\)
Vậy Max = -1 <=> x = 1
d, \(=x^2+2.x.6+36+3=\left(x+6\right)^2+3\ge3\)
Vậy Min = 3 <=> x = - 6
e, \(=-x^2-2.x.6-36+36=-\left(x+6\right)^2+36\le36\)
Vậy Max = 36 <=> x = -6 .
f, \(=-x^2+4x-4+5=-\left(x^2-4x+4\right)+5=-\left(x-2\right)^2+5\le5\)
Vậy Max = 5 <=> x = 2
`B =9x^2 +6x = (3x)^2 + 2*3x*1 +1 -1)`
`=(3x +1)^2 -1`
Do `(3x+1)^2 >=0 AA x`
`=> (3x+1)^2 -1 >=-1 AA x`
hay `B>=-1`
Dấu ''='' xảy ra khi và chỉ khi `3x+1=0 =>x =-1/3`
Vậy GTNN của `B=-1` khi `x=-1/3`
B = 9\(x^2\) + 6\(x\)
B = 9\(x^2\) + 6\(x\) + 1 - 1
B = (3\(x\) + 1)2 - 1
Vì (3\(x\) + 1)2 ≥ 0 ⇒ (3\(x\) + 1)2 - 1 ≥ -1
B(min) = -1⇔ \(x\) = - \(\dfrac{1}{3}\)
C = \(x^2\) - 12 \(x\) + 34
C = (\(x^2\) - 12\(x\) + 36) - 2
C = (\(x\) - 6)2 - 2
Vì (\(x\) - 6)2 ≥ 0 ⇒ ( \(x\) - 6)2 - 2 ≥ -2
C(min) = - 2 ⇔ \(x\) - 6 = 0 ⇔ \(x\) = 6
Vậy giá trị nhỏ nhất của biểu thức là - 2 xảy ra khi \(x\) = 6
C = �2x2 - 12 �x + 34
C = (�2x2 - 12�x + 36) - 2
C = (�x - 6)2 - 2
Vì (�x - 6)2 ≥ 0 ⇒ ( �x - 6)2 - 2 ≥ -2
C(min) = - 2 ⇔ �x - 6 = 0 ⇔ �x = 6
Vậy giá trị nhỏ nhất của biểu thức là - 2 diễn ra khi �x = 6
\(C=16x^2-8x+2024\)
\(\Rightarrow C=16x^2-8x+1+2023\)
\(\Rightarrow C=\left(4x-1\right)^2+2023\ge2023\left(\left(4x-1\right)^2\ge0\right)\)
\(\Rightarrow Min\left(C\right)=2023\)
\(D=-25x^2+50x-2023\)
\(\Rightarrow D=-\left(25x^2-50x+25\right)-1998\)
\(\Rightarrow D=-\left(5x-5\right)^2-1998\le1998\left(-\left(5x-5\right)^2\le0\right)\)
\(\Rightarrow Max\left(D\right)=1998\)
\(B=-x^2+20x+100=-\left(x^2-20x+100\right)+200=-\left(x-10\right)^2+200\le200\left(-\left(x-10\right)^2\le0\right)\)
\(\Rightarrow Max\left(B\right)=200\)
\(E=\left(2x-1\right)^2-\left(3x+2\right)\left(x-5\right)\)
\(\Rightarrow E=4x^2-4x+1-\left(3x^2-13x-10\right)\)
\(\Rightarrow E=4x^2-4x+1-3x^2+13x+10\)
\(\Rightarrow E=x^2+9x+11=x^2+9x+\dfrac{81}{4}-\dfrac{81}{4}+11\)
\(\Rightarrow E=\left(x+\dfrac{9}{2}\right)^2-\dfrac{37}{4}\ge-\dfrac{37}{4}\left(\left(x+\dfrac{9}{2}\right)^2\ge0\right)\)
\(\Rightarrow Min\left(E\right)=-\dfrac{37}{4}\)
\(F=\left(3x-5\right)^2-\left(3x+2\right)\left(4x-1\right)\)
\(\Rightarrow F=9x^2-30x+25-\left(12x^2+3x-2\right)\)
\(\Rightarrow F=-3x^2-33x+27=-3\left(x^2-10x+9\right)\)
\(\Rightarrow F=-3\left(x^2-10x+25\right)+48=-3\left(x-5\right)^2+48\le48\left(-3\left(x-5\right)^2\le0\right)\)
\(\Rightarrow Max\left(F\right)=48\)
thật ra là có 1 bài rút gọn nx, nhưng mik làm đc rồi. bài rút gọn đó ra A=-1, đây là ý tiếp theo của bài đó :<
\(A=9x^2+18x-20\)
\(\Leftrightarrow A=\left(3x\right)^2+2.3x.3+9-29\)
\(\Leftrightarrow A=\left(3x+3\right)^2-29\le-29\forall x\)
Dấu " = " xảy ra
\(\Leftrightarrow\left(3x+3\right)^2=0\Leftrightarrow3x+3=0\Leftrightarrow3x=-3\Leftrightarrow x=-1\)
Vậy Min A là : \(-29\Leftrightarrow x=-1\)
\(B=m^2+10m+1\)
\(\Leftrightarrow B=m^2+2.m.5+25-24\)
\(\Leftrightarrow B=\left(m+5\right)^2-24\le-24\forall m\)
Dấu \("="\) xảy ra
\(\Leftrightarrow\left(m+5\right)^2=0\Leftrightarrow m+5=0\Leftrightarrow m=-5\)
Vậy Min B là : -24 \(\Leftrightarrow m=-5\)
\(C=25x^2-20x+30\)
\(\Leftrightarrow C=\left(5x\right)^2-2.5x.2+4+26\)
\(\Leftrightarrow C=\left(5x-2\right)^2+26\le26\forall x\)
Dấu " = " xảy ra
\(\Leftrightarrow\left(5x-2\right)^2=0\Leftrightarrow5x-2=0\Leftrightarrow5x=2\Leftrightarrow x=\dfrac{2}{5}\)
Vậy Min C là : 26 \(\Leftrightarrow x=\dfrac{2}{5}\)
có đúng k ?
GTNN mà