K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2021

Mình cảm ơn ạ

19 tháng 4 2021

làm ơn, mình đang cần rất gấp !!!!!!!!!!!!!

:((((((((((

 

19 tháng 4 2021

Do x = -1 là nghiệm của phương trình

⇒ a - b - 1 - 2 = 0

⇒ a - b = 3

Tương tự ta có a + b = 1

Vậy a = 2 ; b = -1 

 

24 tháng 2 2021

Vì \(f\left(x\right)⋮x-2;f\left(x\right):x^2-1\) dư 1\(\Rightarrow\left\{{}\begin{matrix}f\left(x\right)=g\left(x\right)\cdot\left(x-2\right)\\f\left(x\right)=q\left(x\right)\left(x^2-1\right)+x=q\left(x\right)\left(x-1\right)\left(x+1\right)+x\end{matrix}\right.\) 

\(\Rightarrow\left\{{}\begin{matrix}f\left(2\right)=0\\f\left(1\right)=1\\f\left(-1\right)=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}32+4a+2b+c=0\\2+a+b+c=1\\2+a-b+c=-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}4a+2b+c=-32\left(1\right)\\a+b+c=-1\left(2\right)\\a-b+c=-3\left(3\right)\end{matrix}\right.\)

 Trừ từng vế của (2) cho (3) ta được:

\(\Rightarrow2b=2\Rightarrow b=1\)

Thay b=1 vào lần lượt (1) ,(2),(3) ta được:

\(\Rightarrow\left\{{}\begin{matrix}4a+2+c=-32\\a+1+c=-1\\a-1+c=-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\\a+c=-2\\a+c=-2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4a+c=-34\left(4\right)\\a+c=-2\left(5\right)\end{matrix}\right.\)

Trừ từng vế của (4) cho (5) ta được:

\(\Rightarrow3a=-32\Rightarrow a=-\dfrac{32}{3}\Rightarrow c=-2+\dfrac{32}{3}=\dfrac{26}{3}\) Vậy...

AH
Akai Haruma
Giáo viên
6 tháng 8 2021

Lời giải:

$A(x)=(x^3-x)+(ax^2-a)=x(x^2-1)+a(x^2-1)=(x+a)(x^2-1)$

$=(x+a)B(x)$
Do đó $A(x)$ luôn chia hết cho $B(x)$ với mọi $a$

30 tháng 6 2024

=>

 

31 tháng 10 2020

Gỉar sử \(A:B\) được thương là \(4x+c\)

DO \(A⋮B\) nên \(A:B\) được dư bằng 0

Khi đó

\(4x^3+ax^2+bx+5=\left(4x+c\right)\left(x^2-x+1\right)\)

\(=4x^3+cx^2-4x^2-cx+4x+c\)

\(=4x^3+x^2\left(c-4\right)+x\left(4-c\right)+c\)

Áp dụng đồng nhất thức ta có

\(\left\{{}\begin{matrix}a=c-4\\b=4-c\\c=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a=1\\b=-1\end{matrix}\right.\)

Vậy...

Đặt f(x) = x^4 + ax^3 + bx +b 

xét f(-1)=0 và f(1) =0(vì f(x) chia hết cho a khi f(a) =0)

f(-1) = 1 - a -b + b = 1-a =0

+

f(1) = 1+a+b+b = 1+a+2b = 0

-------------------------------------------

=> 2+2b = 0

=> b= -1

=> 1+a-2 = 0

=> a=1

DD
20 tháng 12 2021

\(f\left(x\right)=ax^3+bx+c\)

\(\hept{\begin{cases}f\left(-2\right)=0\\f\left(1\right)=1+5=6\\f\left(-1\right)=-1+5=4\end{cases}}\Leftrightarrow\hept{\begin{cases}-8a-2b+c=0\\a+b+c=6\\-a-b+c=4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b=\frac{1}{2}\\c=5\end{cases}}\)