Tìm x,y:\(\frac{x}{2}=\frac{y}{5}\)và 3x-y=2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Ta có
\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{3x}{6}=\frac{y}{5}\)
Áp dụng tc của dãy tỉ só bằng nhau
\(\Rightarrow\frac{3x}{6}=\frac{y}{5}=\frac{3x-y}{6-5}=\frac{10}{1}=10\)
=> x=2.10=20
y=5.10=50
Ta có
\(\frac{x}{2}=\frac{y}{5}\Rightarrow\frac{x^2}{4}=\frac{y^2}{25}=\frac{xy}{10}=\frac{30}{10}=3\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=\sqrt{12}\\x=-\sqrt{12}\end{array}\right.\)
\(\left[\begin{array}{nghiempt}y=\sqrt{75}\\y=-\sqrt{75}\end{array}\right.\)
Mà 2;5 cùng dấu
=> x; y cùng dấu
Vậy \(\left(x;y\right)=\left(\sqrt{12};\sqrt{75}\right);\left(-\sqrt{12};-\sqrt{75}\right)\)
a, x/3=y/4 b, 2x=5y
=> 2x/6=y/4=2x-4/6-4=2/2=1 => x/5=y/2 => 3x/15=y/2=3x-y/15-2=22/13
+, x/3=1 => x=3 +,2x=22/13 => x=11/13
+, y/4=1 => y=4 +,5y=22/13 => y=22/65
Vậy .... Vậy ...........
c, x/y=3/5 d, x/2=y/5
=> x/3=y/5 => 2x/4=y/5
=>3x/9=2y/10 => 2x+y/4+5=18/9=2
=> 3x+2y/9+10=38/19=2 +,x/2=2 => x=4
+,x/3=2 => x=6 +,y/5=2 => y=10
Vậy ........... Vậy ............
+,y/5=2 => y=10
1) a) => \(\frac{x}{2}=\frac{y}{5}vàx+y=21\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{2}=\frac{y}{5}=\frac{x+y}{2+5}=\frac{21}{7}=3\)
* \(\frac{x}{2}=3\Rightarrow x=2\cdot3=6\)
* \(\frac{y}{5}=3\Rightarrow y=3\cdot5=15\)
c) =.> \(\frac{x}{7}=\frac{y}{5}vày-x=12\)
Áp dụng tính chất của dãy tỉ số bằng nhau , ta có :
\(\frac{x}{7}=\frac{y}{5}=\frac{y-x}{5-7}=\frac{12}{-2}=-6\)
*\(\frac{x}{7}=-6\Rightarrow x=-6\cdot7=-42\)
*\(\frac{y}{5}=-6\Rightarrow y=-6\cdot5=-30\)
Bài 5:
Theo đề ra, ta có:
\(\frac{x}{y}=\frac{2}{5}\Rightarrow\frac{x}{2}=\frac{y}{5}\)
Ta đặt: \(\frac{x}{2}=\frac{y}{5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=5k\end{cases}}\)
\(\Rightarrow k^2=4\Rightarrow k=\pm2\)
Trường hợp 1: Với \(k=2\)
\(\Rightarrow\frac{x}{2}=2\Rightarrow x=2.2=4\)
\(\Rightarrow\frac{y}{5}=2\Rightarrow y=5.2=10\)
Trường hợp 2: Với \(k=-2\)
\(\Rightarrow\frac{x}{2}=-2\Rightarrow x=2.\left(-2\right)=-4\)
\(\Rightarrow\frac{y}{5}=-2\Rightarrow y=5.\left(-2\right)=-10\)
Bài 4:
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)
\(\Rightarrow\frac{3\left(x-1\right)}{3.2}=\frac{4\left(y+3\right)}{4.4}=\frac{5\left(z-5\right)}{5.6}\Rightarrow\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)
\(=\frac{-\left(3x-3\right)-\left(4y+12\right)+\left(5z-25\right)}{-6-16+30}=\frac{\left(-3x-4y+5z\right)+3-12-25}{8}=\frac{50-34}{8}=2\)
\(\Rightarrow\frac{3x-3}{6}=2\Rightarrow3x-3=12\Rightarrow x=15\)
\(\Rightarrow\frac{4y+12}{16}=2\Rightarrow4y+12=32\Rightarrow y=5\)
\(\Rightarrow\frac{5z-25}{30}=2\Rightarrow5x-25=60\Rightarrow z=17\)
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Đặt \(k=\frac{x}{2}=\frac{y}{5}\)
Khi đó : \(k^2=\frac{xy}{2.5}=\frac{90}{10}=9\)
Suy ra : \(k=-3;3\)
+ k = -3 thì : \(\frac{x}{2}=-3\Rightarrow x=-6\)
\(\frac{y}{5}=-3\Rightarrow y=-15\)
+ k = 3 thì : \(\frac{x}{2}=3\Rightarrow x=6\)
\(\frac{y}{5}=3\Rightarrow y=15\)
ta có: \(\frac{x-1}{5}\) = \(\frac{y-2}{3}\) = \(\frac{z-2}{2}\) => \(\frac{3x-3}{15}=\frac{5y-10}{15}=\frac{6z-12}{12}\) và 3x-5y+6z =9
Áp dụng t/c ..., ta có:
\(\frac{3x-3}{15}=\frac{5y-10}{15}=\frac{6z-12}{12}\) =\(\frac{\left(3x-5y+6z\right)+\left(-3+10-12\right)}{15-15+12}\) =\(\frac{4}{12}\)=\(\frac{1}{3}\)
\(\frac{x-1}{5}\) =\(\frac{1}{3}\) =>x-1=\(\frac{5}{3}\)=>x=\(\frac{8}{3}\)
\(\frac{y-2}{3}\) = \(\frac{1}{3}\)=>y-2=1 =>y=3
\(\frac{z-2}{2}\) =\(\frac{1}{3}\) =>z-2=\(\frac{2}{3}\) =>z=\(\frac{8}{3}\)
Ta có: \(\frac{x}{2}=\frac{y}{5}=\frac{3x-y}{3.2-5}=\frac{2}{1}=2\)
=> \(\hept{\begin{cases}x=2.2=4\\2.5=10\end{cases}}\)
Theo bài ra ta có:x/2=y/5;3x-y=2
5x=2y;2(3x-y)=4
5x=2y;6x-2y=4
6x-5x=4
x=4
2y=5.4
2y=20
y=20:2
y=10
Vậy y=10;x=4