K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 9 2019

Câu hỏi của Kudo Shinichi - Toán lớp 9 - Học toán với OnlineMath

4 tháng 11 2019

@Nguyễn Việt Lâm

4 tháng 11 2019

@Akai Haruma

24 tháng 10 2017

mk ko bt 123

NV
16 tháng 12 2020

ĐKXĐ: \(\left[{}\begin{matrix}x\le-1\\x\ge\dfrac{3}{5}\end{matrix}\right.\)

\(\left(x+1\right)\left(45x^2-62x+25\right)=4\sqrt{\left(x+1\right)\left(5x-3\right)\left(5x-3\right)^2}\)

- Với \(x=-1\) là 1 nghiệm

- Với \(x< -1\Rightarrow\left\{{}\begin{matrix}VT< 0\\VP>0\end{matrix}\right.\) pt vô nghiệm

Với \(x\ge\dfrac{3}{5}\) ta có:

\(45x^3-17x^2-37x+25=4\sqrt{\left(x+1\right)\left(5x-3\right)\left(5x-3\right)^2}\)

\(\Leftrightarrow45x^3-17x^2-37x+25\le2\left[\left(x+1\right)\left(5x-3\right)+\left(5x-3\right)^2\right]\)

\(\Leftrightarrow45x^3-77x^2+19x+13\le0\)

\(\Leftrightarrow\left(x-1\right)^2\left(45x+13\right)\le0\)

\(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

7 tháng 9 2019

Đặt: \(\sqrt[3]{25-x^3}=t\Leftrightarrow t^3+x^3=25\Leftrightarrow\left(t+x\right)^3-3tx\left(t+x\right)=25\)(1)

pt trở thành: 

\(xt\left(x+t\right)=30\) Thế vào (1) ta có:

\(\left(t+x\right)^3-3.30=25\)

<=> \(t+x=\sqrt[3]{115}\)

=> \(xt=\frac{30}{\sqrt[3]{115}}\)

x, t là nghiệm của phương trình bậc 2:

 \(X^2-\sqrt[3]{115}X+\frac{30}{\sqrt[3]{115}}=0\)(1)

Đen ta <0 

=> Phương trình (1) vô nghiệm.

=> Không tồn tại x

Vậy phương trình ban đầu vô nghiệm.

NV
8 tháng 8 2021

\(x^3+y^3+3xy=1\Leftrightarrow\left(x+y\right)^3-1-3xy\left(x+y\right)+3xy=0\)

\(\Leftrightarrow\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)=0\)

\(\Leftrightarrow\left(x+y-1\right)\left(x^2+y^2-xy+x+y+1\right)=0\)

\(\Leftrightarrow\left(x+y-1\right)\left[\left(x-y\right)^2+\left(x+1\right)^2+\left(y+1\right)^2\right]=0\)

\(\Rightarrow\left[{}\begin{matrix}x+y-1=0\\x=y=-1\end{matrix}\right.\)

TH1: \(x=y=-1\) thế vào pt dưới kiểm tra ko thỏa mãn

TH2: \(y=1-x\) thế vào pt dưới:

\(\sqrt{\left(4-x\right)\left(x+12\right)}=\dfrac{27}{x+3}\) (ĐKXĐ: \(-12\le x\le4;x\ne-3\))

- Với \(x< -3\) pt vô nghiệm, với \(x>-3\)

Đặt \(x+3=t>0\)

\(\Rightarrow\sqrt{\left(t+9\right)\left(7-t\right)}=\dfrac{27}{t}\Leftrightarrow64-\left(t+1\right)^2=\dfrac{27^2}{t^2}\)

\(\Leftrightarrow64=\dfrac{27^2}{t^2}+\left(t+1\right)^2=\dfrac{25^2}{t^2}+t^2+\dfrac{104}{t^2}+t+t+1\ge2\sqrt{\dfrac{25^2t^2}{t^2}}+3\sqrt[3]{\dfrac{104t^2}{t^2}}+1>65\) (vô lý)

Vậy hệ vô nghiệm

28 tháng 3 2020

I was COME BACK hehe

2/ Đặt \(x=a;\sqrt{25-x^3}=b\) thì \(a^3+b^3=25\)

Theo đề bài ta có hệ: \(\left\{{}\begin{matrix}a^3+b^3=25\\ab\left(a+b\right)=30\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^3+b^3+3ab\left(a+b\right)=115\\ab\left(a+b\right)=30\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=\sqrt[3]{115}\\ab=\frac{30}{a+b}=\frac{30}{\sqrt[3]{115}}\end{matrix}\right.\). Theo hệ thức Viet đảo: a,b là 2 nghiệm của pt:

\(t^2-\sqrt[3]{115}t+\frac{30}{\sqrt[3]{115}}=0\). Hay là \(1/4\, \left( -2\,t+\sqrt [3]{115} \right) ^{2}+{\frac {{115}^{2/3}}{92 }} =0\) (vô nghiệm)

Vậy ...

28 tháng 3 2020

1/ Sol nốt rồi ngủ:v

Đặt \(\sqrt[3]{6x+1}=t\Rightarrow x=\frac{t^3-1}{6}\). Thay vào, pt tương đương:

\(\left( {t}^{3}-3\,t-1 \right) \left( {t}^{6}+3\,{t}^{4}-2\,{t}^{3}+9 \,{t}^{2}-3\,t+10 \right) =0 \)

Trước hết ta chứng minh pt bậc 6 vô nghiệm:

\( \left( {t}^{6}+3\,{t}^{4}-2\,{t}^{3}+9 \,{t}^{2}-3\,t+10 \right) >0 \)

Thật vậy, dễ thấy \(t^2-3t+\frac{9}{4}=\left(t-\frac{3}{2}\right)^2\ge0\)

Do đó ta cần chứng minh:\({t}^{6}+3\,{t}^{4}-2\,{t}^{3}+8\,{t}^{2}+{\frac{31}{4}} > 0\)

Hay là: \(t^6+t^2\left(3t^2-2t+8\right)+\frac{31}{4}>0\)

Bất đẳng thúc hiển nhiên. Cuối cùng, ta tìm t thỏa mãn:

\(\left( {t}^{3}-3\,t-1 \right) =0\). Em bí mất ;( Dùng Wolfram Alpha nó ra nghiệm phức.

@Akai Haruma giúp em phần này với ạ!