Tìm GTLN của biểu thức
\(C=|x-3|-|5-x|\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(C=\dfrac{5-x^2}{x^2+3}\)
\(=\dfrac{-\left(x^2+3\right)+8}{x^2+3}=\dfrac{8}{x^2+3}-1\)
Ta sẽ có : \(x^2\ge0\Rightarrow x^2+3\ge3\Rightarrow\dfrac{8}{x^2+3}\le\dfrac{8}{3}\)
\(\Rightarrow C=\dfrac{8}{x^2+3}-1\le\dfrac{8}{3}-1=\dfrac{5}{3}\)
Vậy : \(MaxC=\dfrac{5}{3}\Leftrightarrow x=0.\)
Để C lớn nhất thì x² + 3 nhỏ nhất
Ta có:
x² ≥ 0 với mọi x R
⇒ x² + 3 ≥ 3 với mọi x R
⇒ x² + 3 nhỏ nhất là 3 khi x = 0
⇒ max C = (5 - 0²)/(0² + 3) = 5/3
1:
a: =x^2-7x+49/4-5/4
=(x-7/2)^2-5/4>=-5/4
Dấu = xảy ra khi x=7/2
b: =x^2+x+1/4-13/4
=(x+1/2)^2-13/4>=-13/4
Dấu = xảy ra khi x=-1/2
e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4
Dấu = xảy ra khi x=1/2
f: x^2-4x+7
=x^2-4x+4+3
=(x-2)^2+3>=3
Dấu = xảy ra khi x=2
2:
a: A=2x^2+4x+9
=2x^2+4x+2+7
=2(x^2+2x+1)+7
=2(x+1)^2+7>=7
Dấu = xảy ra khi x=-1
b: x^2+2x+4
=x^2+2x+1+3
=(x+1)^2+3>=3
Dấu = xảy ra khi x=-1
\(Q=-5\left|x+\frac{1}{2}\right|+2021\le2021\forall x\)
Dấu ''='' xảy ra khi x = -1/2
Vậy GTLN của Q là 2021 khi x = -1/2
\(C=\frac{5}{3}\left|x-2\right|+2\ge2\forall x\)
Dấu ''='' xảy ra khi x = 2
Vậy GTNN của C là 2 khi x = 2
\(A=x^2-6x+10\)
\(\Leftrightarrow A=x^2-2\cdot x\cdot3+3^2-9+10\)
\(\Leftrightarrow A=\left(x-3\right)^2+1\ge1\) \(\forall x\in z\)
\(\Leftrightarrow A_{min}=1khix=3\)
\(B=3x^2-12x+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x\right)^2-2\cdot\sqrt{3}x\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2-12+1\)
\(\Leftrightarrow B=\left(\sqrt{3}x-2\sqrt{3}\right)^2-11\ge-11\) \(\forall x\in z\)
\(\Leftrightarrow B_{min}=-11khix=2\)
ta co:|x-3|-|5-x|\(\le\)0\(\Rightarrow\)maxbt=0\(\Leftrightarrow\)\(\hept{\begin{cases}\\\end{cases}}\)x-3=0suyrax=3
5-x=0suy ra x=5