K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2018

Sửa lại đề : \(\frac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}\)

Ta có : \(\frac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}\)   \(=\) \(\frac{2x^2+3xy+y^2}{\left(x-y\right)\left(2x^2+3xy+y^2\right)}\)

                                                          \(=\frac{1}{x-y}\)      ( Chia cả tử và mẫu cho \(2x^2+3xy+y^2\))

                

                                                        

27 tháng 9 2019

x+y=2

\(\Rightarrow\)x=1; x=0; x=-1; x=-2;...

y=1; y=2; y=3; y=4;...

\(\Rightarrow\)x.y= 1.1=1=1

0.2=0<1

-1.3=-3<1

-2.4=-8<1

.............

\(\Rightarrow\)Nếu x+y=2 thì x.y\(\le\)1

27 tháng 9 2019

Ta có: \(x+y=2\)

\(\Rightarrow x=2-y.\)

Có: \(x.y=\left(2-y\right).y\)

\(\Rightarrow x.y=2y-y^2\)

\(\Rightarrow x.y=-y^2+2y-1+1\)

\(\Rightarrow x.y=-\left(y-1\right)^2+1.\)

\(\left(y-1\right)^2\ge0\) \(\forall y.\)

\(\Rightarrow-\left(y-1\right)^2\le0\) \(\forall y.\)

\(\Rightarrow-\left(y-1\right)^2+1\le1\) \(\forall y.\)

\(\Rightarrow x.y\le1\left(đpcm\right).\)

Chúc bạn học tốt!

15 tháng 10 2017

Giả sử tồn tại hai số hữu tỉ x và y thỏa mãn đề bài

\(\frac{1}{x+y}=\frac{1}{x}+\frac{1}{y}\Rightarrow\frac{1}{x+y}=\frac{x}{xy}+\frac{y}{xy}\Rightarrow\frac{1}{x+y}=\frac{x+y}{xy}\Rightarrow\left(x+y\right)^2=xy\)

Vì x và y là hai số trái dấu => xy < 0

Mà \(\left(x+y\right)^2\ge0\forall x,y\)

=> Mâu thuẫn => giả sử sai

Vậy không tồn tại hai số hữu tỉ x và y trái dấu, không đối nhau thỏa mãn đề bài

15 tháng 10 2017

cảm ơn bạn nha..

15 tháng 6 2020

Đề của bạn thiếu dấu bằng.

Ta có: 

\(xy=\frac{4xy}{4}\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\)

Dấu "=" xảy ra <=> x = y = 1/2

9 tháng 10 2020

sai rồi