Giải PT
x+\(\sqrt{4-x^2}\) = 2+3x\(\sqrt{4-x^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đk: \(-x^4+3x-1\ge0\)
Có \(-\left(x^4+1\right)\le-2x^2\)
\(\Rightarrow\sqrt{-x^4+3x-1}+\sqrt{2x^2-3x+2}\le\sqrt{3x-2x^2}+\sqrt{2x^2-3x+2}\)
Áp dụng bunhia có: \(\sqrt{3x-2x^2}+\sqrt{2x^2-3x+2}\le\sqrt{\left(1+1\right)\left(3x-2x^{^2}+2x^2-3x+2\right)}=2\)
\(\Rightarrow\sqrt{-x^4+3x-1}+\sqrt{2x^2-3x+2}\le2\) (*)
Có: \(x^4-x^2-2x+4=\left(x^4+1\right)-x^2-2x+3\ge2x^2-x^2-2x+3=\left(x-1\right)^2+2\ge2\) (2*)
Từ (*) (2*) dấu = xảy ra khi x=1 (TM)
Vậy x=1
Bạn tham khảo thêm ở link sau:
https://hoc24.vn/cau-hoi/giai-phuong-trinhsqrt3x2-5x1-sqrtx2-2sqrt3leftx2-x-1right-sqrtx2-3x4.167769342831
b) Đặt \(\sqrt{x^2-6x+6}=a\left(a\ge0\right)\)
\(\Rightarrow a^2+3-4a=0\)
=> (a - 3).(a - 1) = 0
=> \(\left[{}\begin{matrix}a=3\\a=1\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}\sqrt{x^2-6x+6}=3\\\sqrt{x^2-6x+6}=1\end{matrix}\right.\)
Bình phương lên giải tiếp nhé!
c) Tương tư câu b nhé
Tớ đã trả lời ở câu hỏi mới nhất r nên xin phép được xóa câu hỏi này nhé
Đặt \(x+\sqrt{4-x^2}=a\)
\(\Rightarrow a^2=4+2x\sqrt{4-x^2}\)
\(\Rightarrow a=\dfrac{3a^2-8}{2}\)
\(\Leftrightarrow3a^2-2a-8=0\)
Làm nôt
Lời giải:
Đặt \(\sqrt{4-x^2}=a\)
Ta có hệ phương trình:
\(\left\{\begin{matrix} x+a=2+3ax\\ x^2+a^2=4\end{matrix}\right.\)
\(\Rightarrow \left\{\begin{matrix} x^2+2ax+a^2=(2+3ax)^2\\ x^2+a^2=4\end{matrix}\right.\)
\(\Rightarrow 4+2ax=4+9a^2x^2+12ax\)
\(\Rightarrow 9a^2x^2+10ax=0\)
\(\Rightarrow ax(9ax+10)=0\)
\(\Rightarrow \left[\begin{matrix} a=0\Rightarrow x=\pm 2\\ x=0\\ ax=-\frac{10}{9}\end{matrix}\right.\)
Với \(ax=\frac{-10}{9}\Rightarrow \left\{\begin{matrix} x<0\\ a+x=2+3ax=\frac{-4}{3}\end{matrix}\right.\)
Theo định lý Viete đảo, $x,a$ là nghiệm của pt:
\(X^2+\frac{4}{3}X-\frac{10}{9}=0\)
Vì $x<0$ nên \(x=\frac{-2-\sqrt{14}}{3}\)
Thử lại, ta thấy \(x=0; x=2; x=\frac{-2-\sqrt{14}}{3}\) là nghiệm của pt.