Bài : Tìm x, y biết: (2x - 1)2020 +(y + 1)2020 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\left(2x-1\right)^{2020}\ge0\forall x\)
\(\left(y-\frac{2}{5}\right)^{2020}\ge0\forall y\)
Do đó: \(\left(2x-1\right)^{2020}+\left(y-\frac{2}{5}\right)^{2020}\ge0\forall x,y\)
mà \(\left(2x-1\right)^{2020}+\left(y-\frac{2}{5}\right)^{2020}=0\)
nên \(\left\{{}\begin{matrix}\left(2x-1\right)^{2020}=0\\\left(y-\frac{2}{5}\right)^{2020}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-1=0\\y-\frac{2}{5}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=1\\y=\frac{2}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{2}{5}\end{matrix}\right.\)
Vậy: \(x=\frac{1}{2}\); \(y=\frac{2}{5}\)
Vì \(\left(2x-5\right)^{2020}\ge0\forall x\); \(\left(5y+1\right)^{2022}\ge0\forall y\)
\(\Rightarrow\left(2x-5\right)^{2020}+\left(5y+1\right)^{2022}\ge0\forall x,y\)
mà \(\left(2x-5\right)^{2020}+\left(5y+1\right)^{2022}\le0\)( giả thuyết )
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}2x-5=0\\5y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}2x=5\\5y=-1\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-1}{5}\end{cases}}\)
Vậy \(x=\frac{5}{2}\)và \(y=\frac{-1}{5}\)
( 2x - 5 )2020 + ( 5y + 1 )2022 ≤ 0
Ta có : ( 2x - 5 )2020 ≥ 0 ∀ x
( 5y + 1 )2022 ≥ 0 ∀ y
=> ( 2x - 5 )2 + ( 5y + 1 )2022 ≥ 0 ∀ x, y
Kết hợp với đề bài => Chỉ xảy ra trường hợp ( 2x - 5 )2020 + ( 5y + 1 )2022 = 0
Khi đó \(\hept{\begin{cases}2x-5=0\\5y+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{1}{5}\end{cases}}\)
\(x+y=2\Rightarrow y=2-x\)
\(P=2x^2-\left(2-x\right)^2-5x+\dfrac{1}{x}+2020=x^2-x+\dfrac{1}{x}+2016\)
\(P=x^2+1-x+\dfrac{1}{x}+2015\ge2x-x+\dfrac{1}{x}+2015\)
\(P\ge x+\dfrac{1}{x}+2015\ge2\sqrt{\dfrac{x}{x}}+2015=2017\)
Dấu "=" xảy ra khi \(x=y=1\)
S = 1 - 2 + 3 - 4 +...+ 2019 - 2020
= ( 1 - 2 ) + ( 3 - 4 ) +...+ ( 2019 - 2020 )
= ( -1 ) + ( -1 ) +...+ ( -1 )
Có số số hạng ( -1 ) là : ( 2019 - 1 ) : 1 + 1 = 2019
=> S = ( -1 ) x 2019 = ( -2019 )
1.
S = 1-2+3-4+...+2019-2020
S = (1-2)+(3-4)+...+(2019-2020)
S = (-1) + (-1) +...+ (-1)
S = (-1) . 2020 : 2 = -1010
2.
(2x-1)(y+2) = 3
\(\Rightarrow\left(2x-1\right);\left(y+2\right)\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Ta có bảng :
2x-1 | 1 | -1 | 3 | -3 |
x | 1 | 0 | 2 | -1 |
y+2 | 3 | -3 | 1 | -1 |
y | 1 | -5 | -1 | -3 |
Vậy \(\left(x;y\right)\in\left\{\left(1;1\right);\left(0;-5\right);\left(2;-1\right);\left(-1;-3\right)\right\}\)
Ta có: \(\left\{{}\begin{matrix}\left(2x-3y\right)^{2018}\ge0\forall x,y\\\left(3y-4z\right)^{2020}\ge0\forall y,z\\\left|2x+3y-z-63\right|\ge0\forall x,y,z\end{matrix}\right.\)
\(\Rightarrow\left(2x-3y\right)^{2018}+\left(3y-4z\right)^{2020}+\left|2x+3y-z-63\right|\ge0\forall x,y,z\)
Mà: \(\left(2x-3y\right)^{2018}+\left(3y-4z\right)^{2020}+\left|2x+3y-z-63\right|=0\)
nên: \(\left\{{}\begin{matrix}2x-3y=0\\3y-4z=0\\2x+3y-z-63=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x=3y\\3y=4z\\z=2x+3y-63\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=4z\\3y=4z\\z=4z+4z-63\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4z:2\\y=4z:3\\z=8z-63\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2z\\y=4z:3\\-7z=-63\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\cdot9=18\\y=4\cdot9:3=12\\z=9\end{matrix}\right.\)
Vậy \(x=18;y=12;z=9\).
$Toru$
\(\left(2x-1\right)^{2020}+\left(y+1\right)^{2020}=0\)
\(\Leftrightarrow\hept{\begin{cases}2x-1=0\\y+1=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{2}\\y=-1\end{cases}}\)