Cho a,b e N* ; a>2 ; b>2 . Chứng tỏ rằng a+b < a x b . Helpme !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Không mất tính tổng quát giả sử \(a\ge b\)
Vì \(a^b=b^c\Rightarrow b\le c\)
Vì \(b^c=c^d\Rightarrow c\ge d\)
Vì \(c^d=d^e\Rightarrow d\le e\)
Vì \(d^e=e^a\Rightarrow a\ge a\)
Vì \(e^a=a^b\Rightarrow a\le b\)
Trái với điều giả sử nên xảy ra khi \(a=b\)
Khi đó suy ra \(a=b=c=d=e\) (ĐPCM)
a: A={3;6}
E={1;2;3;4;5;6;7}
B={2;3;5}
=>A là tập con của E và B là tập con của E
b: C là tập nào vậy bạn?
Không mất tính tổng quát, giả sử \(a\ge b\)
Vì \(a^b=b^c\Rightarrow b\le c\)
Vì \(b^c=c^d\Rightarrow c\ge d\)
Vì \(c^d=d^e\Rightarrow d\le e\)
Vì \(d^e=e^a\Rightarrow e\ge a\)
Vì \(e^a=a^b\Rightarrow a\le b\)
Suy ra \(a=b\Rightarrow a=b=c=d=e\)
Đpcm
+Nếu một trong năm số a,b,c,d,e=1
=>a=b=c=d=e=1
+Không mất tính tổng quát giả sử a>1.Từ ab=bc=>b>1
Tương tự như vậy c,d,e>1. Như vậy tất cả các hàm mũ mà a,b,c,d,e là cơ số thì đều là hàm tăng.
Không mất tính tổng quát giả sử \(a\le b\)
Từ \(a^b=b^c\Rightarrow\frac{a^b}{b^b}=\frac{b^c}{b^b}\Rightarrow\left(\frac{a}{b}\right)^b=b^{c-b}\)
Do \(\frac{a}{b}\le1\Rightarrow b^{c-b}\le1=b^0\Rightarrow c-b\le0\Rightarrow c\le b\)
Tương tự như vậy với các đẳng thức còn lại
\(\begin{cases}c\le b\\b^c=c^d\end{cases}\)\(\Rightarrow\begin{cases}\frac{b}{c}\ge1\\\left(\frac{b}{c}\right)^c=c^{d-c}\end{cases}\Rightarrow c\le d\)
\(\begin{cases}c\le d\\c^d=d^e\end{cases}\Rightarrow...\Rightarrow e\le d\)
\(\begin{cases}e\le d\\d^e=e^a\end{cases}\Rightarrow...\Rightarrow e\le a\)
\(\begin{cases}e\le a\\e^a=a^b\end{cases}\Rightarrow....\Rightarrow b\le a\)
Kết hợp \(a\le b\) và \(b\le a\) ta có a=b.Tiếp tục như vậy b=c, c=d, d=e
Vậy phải có a=b=c=d=e
Các câu cho ta 3 số tự nhiên liên tiếp tăng dần là a; a +1; a + 2 và c - 1; c; c + 1
a ) A = 3n + 15m
= 3. ( n + 5m ) chia hết cho 3
( Một tích có một thừa số chia hết cho 3 thì cả tích đó chia hết cho 3 )
b ) Để A chia hết cho 5
=> 3n + 15m chia hết cho 5
Mà 15m = 5. ( 3m ) chia hết cho 5
=> 3n phải chia hết cho 5
mà 3 không chia hết cho 5
nên n phải chia hết cho 5
Vậy A vừa chia hết cho 3 vừa chia hết cho 5 khi n chia hết cho 5
a) (a mũ m)n = a mũ m.n
=> (a mũ m)n = (am)n = am.n
a mũ m.n = am.n
Vậy (am)n = am.n .
b) (a.b)mũ n = a mũ n . b mũ n
=> (a.b)mũ n = (a.b)n = an . bn
a mũ n . b mũ n = an . bn
Vậy (a.b)n = an .bn .
Vì: a>2 => a=2+m
b>2 => b=2+n (m, n thuộc N*)
=> a+b= (2+m) +(2+n)
a.b= (2+m). (2+n)
= 2(2+n)+ m(2+n)
= 4+ 2n+ 2m+ mn
= 4+ m+ m+ n+ n+ mn
= (4+ m+ n) +(m +n +mn)
= (2+ m) +(2+ n) + (m+ n+ mn) > (2+ m)+ (2+n)
=> a.b > a+b
Đáp án:Vì: a>2 => a=2+m
b>2 => b=2+n (m, n thuộc N*)
=> a+b= (2+m) +(2+n)
a.b= (2+m). (2+n)
= 2(2+n)+ m(2+n)
= 4+ 2n+ 2m+ mn
= 4+ m+ m+ n+ n+ mn
= (4+ m+ n) +(m +n +mn)
= (2+ m) +(2+ n) + (m+ n+ mn) > (2+ m)+ (2+n)
=> a.b > a+b .dpcm