Cho tam giác abc , M là 1 điểm tùy ý nawmg trong tam giác
c/m :BI +IC<AC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tứ giác AKBM có hai đường chéo cắt nhau tại trung điểm mỗi đường (FK = FM, FA = FB) nên AKBM là hình bình hành.
Vậy thì AK song song và bằng BM.
Chứng minh tương tự thì BMCH cũng là hình bình hành, suy ra HC song song và bằng BM.
Từ đó ta có AK song song và bằng HC, hay AKHC là hình bình hành.
Vậy AH giao CK tại trung điểm mỗi đường. (1)
Chứng minh hoàn toàn tương tự:
IC song song và bằng AM, KB cũng song song và bằng AM nên IC song song và bằng KB.
Suy ra ICBK là hình bình hành hau BI giao CK tại trung điểm mỗi đường. (2)
Từ (1) và (2), ta có AH, BI, CK đồng quy tại điểm G là trung điểm mỗi đoạn trên.
A B C M N
Kéo dài BM cắt AC tại N
Xét \(\Delta\)ABN có: BN < AB + AN
=> BM + NM < AB + AN
Xét \(\Delta\)MNC có: MN + NC > MC
=> BM + MC < BM + MN + NC < AB + AN + NC = AB + AC
=> BM + MC < AB + AC
Em tham khảo bài 2 tại link dưới đây nhé.
Câu hỏi của Nguyễn Chí Thành - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại link dưới đây nhé.
Câu hỏi của Như - Toán lớp 8 - Học toán với OnlineMath