hãy chứng minh số có dạng abcabc chia hết cho 7,11 và 13
iu mn nhìu ♥
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chứng minh rằng nếu ab+cd+eg chia hết cho 11 thì abcdeg chia hết cho 11
lm giúp mik nha
iu mn nhìu ♥♥♥
Ta có:
¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯abcdeg=10000¯¯¯¯¯ab+¯¯¯¯¯¯¯¯100cd+¯¯¯¯¯egabcdeg¯=10000ab¯+100¯cd+eg¯
=9999¯¯¯¯¯ab+99¯¯¯¯¯cd+¯¯¯¯¯ab+¯¯¯¯¯cd+¯¯¯¯¯eg=9999ab¯+99cd¯+ab¯+cd¯+eg¯
=(9999¯¯¯¯¯ab+99¯¯¯¯¯cd)+(¯¯¯¯¯ab+¯¯¯¯¯cd+¯¯¯¯¯eg)=(9999ab¯+99cd¯)+(ab¯+cd¯+eg¯)
=(11.909.¯¯¯¯¯ab+11.9¯¯¯¯¯cd)+(¯¯¯¯¯ab+¯¯¯¯¯cd+¯¯¯¯¯eg)=(11.909.ab¯+11.9cd¯)+(ab¯+cd¯+eg¯)
=11(909.9.¯¯¯¯¯ab.¯¯¯¯¯cd)+(¯¯¯¯¯ab+¯¯¯¯¯cd+¯¯¯¯¯eg)=11(909.9.ab¯.cd¯)+(ab¯+cd¯+eg¯)
Mà: ⎧⎪ ⎪⎨⎪ ⎪⎩11(909.9.¯¯¯¯¯ab.¯¯¯¯¯cd)⋮11(¯¯¯¯¯ab+¯¯¯¯¯cd+¯¯¯¯¯eg)⋮11{11(909.9.ab¯.cd¯)⋮11(ab¯+cd¯+eg¯)⋮11
⇒11(909.9.¯¯¯¯¯ab.¯¯¯¯¯cd)+(¯¯¯¯¯ab+¯¯¯¯¯cd+¯¯¯¯¯eg)⋮11⇒11(909.9.ab¯.cd¯)+(ab¯+cd¯+eg¯)⋮11
Hay ¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯abcdeg⋮11abcdeg¯⋮11 (Đpcm)
Ta có: abcabc = abc000 + abc
= abc x 1000 + abc
= abc . (1000 + 1)
= abc . 1001
= abc . 7 . 11 . 13
Vậy số abcabc là tích của abc với 7; 11; 13 => abcabc chia hết cho 7; 11 và 13
abcabc=abc*1001
xet 1001 chia hết cho 7
thế là tích chia hết cho 7 thôi
1001/11=91 thế là cùng chia hết cho 11
còn chia 1001 cho 13 thì=77 thế là xong
nhớ tích
abcabc=abc.1000+abc=abc.(1000+1)=abc.1001=abc.11.13.7
Vậy abcabc chia hết cho 7;11;13
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
Giải:
Ta có: abcabc = abc000 + abc
= abc x 1000 + abc
= abc . (1000 + 1)
= abc . 1001
= abc . 7 . 11 . 13
Vậy số abcabc là tích của abc với 7; 11; 13 => abcabc chia hết cho 7; 11 và 13
ta có:abcabc=abc.1001=abc.7.11.13 chia hết cho 7,11 và 13
\(\overline{abcabc}\)
\(=10^5\cdot a+10^4\cdot b+10^3\cdot c+10^2\cdot a+10^1\cdot b+10^0\cdot c\)
\(=100100\cdot a+10010b+1001c\)
\(=91\left(1100a+110b+11c\right)⋮91\)
Ta có : abcabc = abc . 1001 = abc . 77.13
Vậy số có dạng abcabc luôn chia hết cho 77 (đpcm)
Ta có:
abcabc = abc*1001.
=abc*77*13.
Mà abc;13 đều EN.
=>Tích trên chia hết cho 77.
Vậy.....
ta có:abcabc=abc.1001
mà 1001 chia hết cho 7;11;13(là số nguyên tố)
nên abc.1001 chia hết cho 7;11;13(là số nguyên tố)
suy ra số tự nhiên abcabc chia hết cho ít nhất 3 số nguyên tố
Ta có: abcabc = 1000abc + abc = 1001.abc
Vì 1001 = 7.11.13 (là tích của 3 số nguyên tố)
=> abcabc luôn chia hết cho 3 số nguyên tố là 7; 11 và 13
k mk nha!^-^
Ta có thành phần abc trong số abcabc được lặp lại 2 lần để tạo ra số này. Ta có ví dụ như thành phần 123 lặp lại 2 lần tạo nên số trên thành số 123123 giống như số trên và kết quả khi chia cho 143 là chia hết, kết quả là 861. Từ một ví dụ đó, ta suy ra rằng số abcabc hoàn tòan có thể chia hết cho 143.
P/S: Chúc bạn hok tốt !!!
ta có: abcabc = abc x 1000 + abc = abc x 1001
Ta thấy : 1001 chia hết cho 143
=> abc x 1001 chia hết cho 143
=> abcabc chia hết cho 143
HOK TOT
Ta có :
abc abc = abc 000 + abc
= abc x 1000 + abc x 1
= abc x ( 1000 + 1 )
= abc x 1001
= abc x 7 x 11 x 13
Vậy abc abc chia hết cho cả 3 số 7 ; 11 và 13
7;11;13