K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2018

\(x^4-3x^2+1\)

\(=\left(x^4-2x^2+1\right)-x^2\)

\(=\left(x^2-1\right)^2-x^2=\left(x^2-1-x\right)\left(x^2-1+x\right)\)

13 tháng 8 2018

tui quên hi hileuleuhihi

1 tháng 10 2021

1/(x+2)-(3x-1)2=(x+2+3x-1)(x+2-3x+1)=4x(-2x+3)=-8x2+12x

2/(x4+x2)(-2x3-2x)=x2(x2+1)-2x(x2+1)=(x2+1)(x2-2x)

13 tháng 8 2018

    x4 - 3x2 +1

= x4 - 2x2 + 1 - x2

= ( x2 - 1 )2 - x2

= ( x2- 1 +x ) ( x2 - 1 - x ) 

13 tháng 8 2018

umk, mình biết rồi. Tại đọc nhầm đề ấy mà

27 tháng 8 2021

\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2=\left(x^2+4x+8+\dfrac{3}{2}x\right)^2-\dfrac{1}{4}x^2=\left(x^2+\dfrac{11}{2}x+8\right)^2-\left(\dfrac{1}{2}x\right)^2=\left(x^2+\dfrac{11}{2}x+8-\dfrac{1}{2}x\right)\left(x^2+\dfrac{11}{2}x+8+\dfrac{1}{2}x\right)=\left(x^2+5x+8\right)\left(x^2+6x+8\right)=\left(x+2\right)\left(x+4\right)\left(x^2+5x+8\right)\)

\(\left(x^2+4x+8\right)^2+3x\left(x^2+4x+8\right)+2x^2\)

\(=\left(x^2+4x+8\right)^2+x\left(x^2+4x+8\right)+2x\left(x^2+4x+8\right)+2x^2\)

\(=\left(x^2+4x+8\right)\left(x^2+5x+8\right)+2x\left(x^2+5x+8\right)\)

\(=\left(x^2+5x+8\right)\left(x+2\right)\left(x+4\right)\)

28 tháng 10 2017

đặt x^2+x = y
=> y^2 - 2y - 15
= y^2 - 2y + 1 - 16

= ( y - 1 )^2 - 16

= ( y - 1 )^2 - 4^2

= ( y - 1 - 4 ) x ( y-1+4)

=(y -5) (y+3)

= (x^2 +x-5) (x^2+x+3)

17 tháng 7 2015

Đặt x^2 + 2x = y thay vào ta có:

 y(y+4) + 3 = y^2 + 4y +3 = y^2 + y + 3y + 3 = y(y+1) + 3(y + 1) = ( y + 3)( y+ 1)

Thay y = x^2 + 2x ta có

 ( x^2 + 2x + 3)(x^2 + 2x+ 1) = ( x^2 + 2x + 3) (x+ 1)^2

Đúng cho mình nha

15 tháng 10 2020

\(\left(x^2+2x\right)\left(x^2+2x+4\right)+3\)

Đặt \(x^2+2x+2=t\)

\(\Rightarrow\left(t-2\right)\left(t+2\right)+3=t^2-4+3=t^2-1=\left(t-1\right)\left(t+1\right)\)

\(=\left(x^2+2x+2-1\right)\left(x^2+2x+2+1\right)\)

\(=\left(x^2+2x+1\right)\left(x^2+2x+3\right)\)

\(=\left(x+1\right)^2.\left(x^2+2x+3\right)\)

14 tháng 3 2018

\(3x^2+4x+1=3x^2+3x+x+1=\left(x+1\right)\left(3x+1\right)\)

11 tháng 9 2018

Đặt x^2+2x=t =>3t^2-2t-1=3t^2-3t+t-1=3t(t-1)+(t-1)=(t-1)(3t+1)

=>(x^2+2x-1)(3x^2+6x+1)

11 tháng 9 2018

Đặt \(x^2+x+1=t\) 

Ta có: \(\left(x^2+x+1\right)^2+3x\left(x^2+x+1\right)+2x^2\)

\(=t^2+3xt+2x^2\)

\(=t^2+xt+2xt+2x\)

\(=t\left(t+x\right)+2x\left(t+x\right)\)

\(=\left(t+x\right)\left(t+2x\right)\)

\(=\left(x^2+x+1+x\right)\left(x^2+x+1+2x\right)\)

\(=\left(x^2+2x+1\right)\left(x^2+3x+1\right)\)

\(=\left(x+1\right)^2\left(x^2+3x+1\right)\)

Chúc bạn học tốt.

11 tháng 9 2018

(x + 1)(x + 2)(x + 3)(x + 4) - 24

= x4 + 10x3 + 35x2 + 50x + 24 - 24

= x4 + 10x3 + 35x2 + 50x

11 tháng 9 2018

( x + 1 ). ( x + 2 ) ( x + 3 ) ( x + 4 ) - 24

= ( x2 + 5x + 4 ) .( x2 + 5x + 6 ) - 24

Đặt t = x2 + 5x + 5 

=> ( t - 1 ). ( t + 1 ) - 24

= t2 - 1 - 24 

= t2 - 25

= ( t - 5 ). ( t + 5 )

= ( x2 + 5x + 5 - 5 ) . ( x2 + 5x + 5 + 5 )

= ( x2 + 5x ) . ( x2 + 5x + 10 )

= x. ( x + 5 ) . ( x2 + 5x + 10 )