Tìm x
(4/6 : 6/5 + 1/5 : 1/X) x 30 - 26 = 54
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\dfrac{4}{5}:\dfrac{6}{5}+\dfrac{1}{5}:\dfrac{1}{x}\right)\times30-26=54\)
\(\left(\dfrac{4}{5}\times\dfrac{5}{6}+\dfrac{1}{5}\times x\right)\times30=54+26\)
\(\left(\dfrac{4}{6}+\dfrac{1}{5}\times x\right)\times30=80\)
\(\dfrac{4}{6}+\dfrac{1}{5}\times x=\dfrac{8}{3}\)
\(\dfrac{1}{5}\times x=\dfrac{8}{3}-\dfrac{4}{6}\)
\(\dfrac{1}{5}\times x=2\)
\(x=2:\dfrac{1}{5}\)
\(x=2\times5\)
\(x=10\)
\(\Leftrightarrow\)\(\left(\frac{2}{3}+\frac{x}{5}\right)\)\(\times30-26=54\)
\(\Leftrightarrow20+6x\)\(-26=54\)
\(\Leftrightarrow6x=54+26-20\)
\(\Leftrightarrow6x=60\)
\(\Leftrightarrow x=10\)
Học tốt!
\(\left(\frac{4}{5}:\frac{6}{5}+\frac{1}{5}:\frac{1}{x}\right)\cdot30-26=54\)
\(\left(\frac{4}{5}\cdot\frac{5}{6}+\frac{1}{5}\cdot x\right)\cdot30=54+26\)
\(\left(\frac{2}{3}+\frac{x}{5}\right)\cdot30=80\)
\(\frac{2}{3}+\frac{x}{5}=80:30\)
\(\frac{2}{3}+\frac{x}{5}=\frac{8}{3}\)
\(\frac{x}{5}=\frac{8}{3}-\frac{2}{3}\)
\(\frac{x}{5}=2\)
\(x=10\)
\(\left(\frac{4}{5}:\frac{6}{5}+\frac{1}{5}:\frac{1}{x}\right)\cdot30-26=54\)
\(\left(\frac{2}{3}+\frac{x}{5}\right)\cdot30=54\cdot26\)
\(\left(\frac{2}{3}+\frac{x}{5}\right)\cdot30=1404\)
\(\frac{2}{3}+\frac{x}{5}=1404:30\)
\(\frac{2}{3}+\frac{x}{5}=\frac{234}{5}\)
\(\frac{x}{5}=\frac{234}{5}-\frac{2}{3}\)
\(\frac{x}{5}=\frac{692}{15}\)
\(x=\frac{692}{15}\cdot5\)
\(x=\frac{692}{3}\)
\(\left(\frac{4}{5}:\frac{6}{5}+\frac{1}{5}:\frac{1}{x}\right)\times30-26=54\)
\(\Leftrightarrow\left(\frac{4}{5}\times\frac{5}{6}+\frac{1}{5}\times x\right)\times30=80\)
\(\Leftrightarrow\frac{2}{3}+\frac{1}{5}\times x=\frac{8}{3}\)
\(\Leftrightarrow\frac{1}{5}\times x=2\)
\(\Leftrightarrow x=2:\frac{1}{5}\)
\(\Leftrightarrow x=2\times5\)
\(\Leftrightarrow x=10\)
Vậy x = 10.
Matcha
1, <=>33+x=45
<=> x = 12
Vậy x=12
2, <=>x+73 =102
<=> x =29
3,x=2
4, -23+x=25<=>x=2
6, x-8=20<=>x=28
\(\Leftrightarrow\left(\dfrac{2}{3}+\dfrac{x}{5}\right)\cdot30=80\)
=>1/5x+2/3=8/3
=>1/5x=2
hay x=10