tìm giá trị nhỏ nhất của P = 2,56+/1,37-x/
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng công thức sau:
\(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
Ta có: K = |x - 2,13| + |x+ 2,56|
\(\Rightarrow K=\left|2,13-x\right|+\left|x+2,56\right|\ge\left|2,13-x+x+2,56\right|\)
\(\Rightarrow K=\left|2,13-x\right|+\left|x+2,56\right|\ge\left|4,69\right|=4,69\)
Vậy, minK = 4,69 khi x = 2,13 hoặc x = -2,56
\(M=x^2+2x+2=\left(x^2+x+x+1\right)+1\)
\(M=x\left(x+1\right)+1\left(x+1\right)+1=\left(x+1\right)\left(x+1\right)+1\)
\(M=\left(x+1\right)^2+1\)
Vì \(\left(x+1\right)^2\ge0\) với mọi x
=>\(\left(x+1\right)^2+1\ge1\) với mọi x
=>GTNN của M là 1
Dấu "=" xảy ra <=> x+1=0<=>x=-1
nhân cái đầu với cái cuối, hai cái giữa nhân vào nhau rồi đặt ẩn là ra
a) Ta có: \(\left|x+\frac{3}{2}\right|\ge0\forall x\)
Hay : P \(\ge\)0 \(\forall\)x
Dấu "=" xảy ra khi: \(x+\frac{3}{2}=0\) <=> \(x=-\frac{3}{2}\)
Vậy Pmin = 0 tại x = -3/2
b) Ta có: \(\left|3-x\right|\ge0\forall x\)
=> \(\left|3-x\right|+\frac{2}{5}\ge\frac{2}{5}\forall x\)
hay P \(\ge\)2/5 \(\forall\)x
Dấu "=" xảy ra khi: 3 - x = 0 <=> x = 3
Vậy Pmin = 2/5 tại x = 3
a)Có giá trị tuyệt đối của x+3/2 >=0 với mọi x
=> P>=0 với mọi x
P=0 khi x+3/2=0 <=> x=-3/2
Vậy P có giá trị nhỏ nhất là 0 khi x=-3/2
\(P=2,56+\left|1,37-x\right|\)
ta có :
\(\left|1,37-x\right|\ge0\)
\(\Rightarrow2,56+\left|1,37-x\right|\ge2,37+0\)
\(\Rightarrow2,56+\left|1,37-x\right|\ge2,56\)
dấu "=" cảy ra khi :
|1,37 - x| = 0
=> 1,37 - x = 0
=> x = 1,37
vậy gtnn của P = 2,56 khi x = 1,37