Tam giác ABC có AB = 25, AC = 26, đường cao AH = 24. Tính BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét tam giác ABH có AH^2+BH^2=AB^2
AB^2-AH^2=BH^2 <=> 625-576=49=BH^2
<=> BH=7
tương tự tính ra CH=10
BC=7+10=17
tích cho mk nha
b: Ta có: \(\cot\widehat{B}+\cot\widehat{C}\)
\(=\dfrac{AC}{AB}+\dfrac{AB}{AC}\)
\(=\dfrac{AB^2+AC^2}{AB\cdot AC}\)
\(=\dfrac{BC^2}{AB\cdot AC}\)
\(=\dfrac{BC^2}{BC\cdot AH}=\dfrac{BC}{AH}\)
Ap dung dinh li pi ta go vao tam giac ABH tinh dc BH=7
tuong tu tinh dc CH=10
=> BC= BH+CH= 7+10=17
Bạn không ghi rõ đề sao mà làm (AH không có điều kiện vuông góc => không chứng minh được tam giác vuông để tính cạnh theo định lý Py-ta-go)
A B C 25cm 26cm 24cm H *Xét △AHB vuông tại H, ta có: AH2+BH2=AB2( theo định lý Py-ta-go)
suy ra BH=√AB2-AH2=√252-242=7(1)
*Xét △AHC ⊥ tại H, ta có: AH2+CH2=AC2(theo định lý Py-ta-go)
suy ra CH=√AC2-AH2=√262-242=10(2)
Mà BC=BH+CH
Từ (1)&(2) suy ra BC=CH+BH=10+7=17
+ Xét \(\Delta ABH\) vuông tại \(H\left(gt\right)\) có:
\(AH^2+BH^2=AB^2\) (định lí Py - ta - go).
=> \(24^2+BH^2=25^2\)
=> \(BH^2=25^2-24^2\)
=> \(BH^2=625-576\)
=> \(BH^2=49\)
=> \(BH=7\left(cm\right)\) (vì \(BH>0\)).
+ Xét \(\Delta ACH\) vuông tại \(H\left(gt\right)\) có:
\(AH^2+CH^2=AC^2\) (định lí Py - ta - go).
=> \(24^2+CH^2=26^2\)
=> \(CH^2=26^2-24^2\)
=> \(CH^2=676-576\)
=> \(CH^2=100\)
=> \(CH=10\left(cm\right)\) (vì \(CH>0\)).
+ Ta có: \(BC=BH+CH.\)
=> \(BC=7+10\)
=> \(BC=17\left(cm\right).\)
Vậy \(BC=17\left(cm\right).\)
Chúc bạn học tốt!
Bài 5:
Ta có: \(AB^2=BH\cdot BC\)
\(\Leftrightarrow BH\left(BH+9\right)=400\)
\(\Leftrightarrow BH^2+25HB-16HB-400=0\)
\(\Leftrightarrow BH=16\left(cm\right)\)
hay BC=25(cm)
Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AC=15\left(cm\right)\\AH=12\left(cm\right)\end{matrix}\right.\)
Bài 3:
Gọi độ dài hai cạnh góc vuông lần lượt là a,b
Theo đề, ta có: a/8=b/15
Đặt a/8=b/15=k
=>a=8k; b=15k
Ta có: \(a^2+b^2=51^2\)
\(\Leftrightarrow289k^2=2601\)
=>k=3
=>a=24; b=45
Bài 6:
Xét ΔABC có \(10^2=8^2+6^2\)
nên ΔABC vuông tại A
Refer:
2,
Ta có:AH là đường cao ΔABC
⇒AH ⊥ BC tại H
⇒∠AHB=∠AHC=90°
⇒ΔAHB và ΔAHC là Δvuông H
Xét ΔAHB vuông H có:
AH² + HB²=AB²(Py)
⇔24² + HB²=25²
⇔ HB²=25² - 24²
⇔ HB²=49
⇒ HB=7(đvđd)
Chứng minh tương tự:HC=10(đvđd)
Ta có:BC=BH + CH=7 + 10=17(đvđd)
Ta có: \(AH^2+HB^2=AB^2\) ( \(\Delta AHB\) vuông tại H )
\(\Rightarrow HB^2=AB^2-AH^2=25^2-24^2=49\)
\(\Rightarrow HB=\sqrt{49}=7\left(cm\right)\)
Ta có: \(AH^2+HC^2=AC^2\) ( \(\Delta AHC\) vuông tại H )
\(\Rightarrow HC^2=AC^2-AH^2=26^2-24^2=100\)
\(\Rightarrow HC=\sqrt{100}=10\left(cm\right)\)
Vậy \(BC=HB+HC=7+10=17\left(cm\right)\)
Xét tam giác vuông ABH, theo định lý Py-ta-go, ta có: AB^2=AH^2+BH^2 => BH^2=AB^2-AH^2
=>BH^2=25^2-24^2=49 => BH=7
Xét tam giác vuông AHC, tương tự dựa vào định lý Py-ta-go và theo các bước như trên, Tìm được HC^2=100 => HC=10
Suy ra BC=BH+HC=7=10=17
Vậy HC=17(đơn vị)