Viết biểu thức sau dưới dạng bình phương 1 tổng
13 + 6√3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`B=(x/2+y)^3-6(x/2+y)^2z + 6(x+2y)z^2-8z^3`
`=(x/2+y)^3 - 3. (x/2+y)^2 . 2z + 3. (x/2+y) . (2z)^2 - (2z)^3`
`=(x/2+y-2z)^3`
Sửa đề: Δ\(B=\left(\dfrac{x}{2}+y\right)^3-6\left(\dfrac{x}{2}+y\right)^2z+12\left(x+2y\right)\cdot z^2-8z^3\)
Ta có: \(B=\left(\dfrac{x}{2}+y\right)^3-6\left(\dfrac{x}{2}+y\right)^2z+12\left(x+2y\right)\cdot z^2-8z^3\)
\(=\left(\dfrac{1}{2}x+y\right)^2-3\cdot\left(\dfrac{1}{2}x+y\right)^2\cdot2z+3\cdot\left(\dfrac{1}{2}x+y\right)\cdot\left(2z\right)^2-\left(2z\right)^3\)
\(=\left(\dfrac{1}{2}x+y-2z\right)^3\)
z2−6z+13+t2−4t
=z2- 6z+9+t2- 4t +4
=z2-2.z.3+32+t2-2.t.2+22
=(z-3)2+(t-2)2
2x y 2 + x 2 y 4 + 1 = x y 2 2 + 2.x y 2 .1 + 1 2 = x y 2 + 1 2
\(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1\)(2)
\(=\left(x-2\right)\left(x-5\right)\left(x-3\right)\left(x-4\right)+1\)
\(=\left(x^2-7x+10\right)\left(x^2-7x+12\right)+1\)(1)
Đặt \(x^2-7x+10=t\)
\(\Rightarrow\left(1\right)=t\left(t+2\right)+1=t^2+2t+1=\left(t+1\right)^2\)
Mà \(x^2-7x+10=t\)nên \(\left(2\right)=\left(x^2-7x+11\right)^2\)
Vậy \(\left(x-2\right)\left(x-3\right)\left(x-4\right)\left(x-5\right)+1\)\(=\left(x^2-7x+11\right)^2\)
\(\left(x+1\right)^3-x\left(x-3\right)\left(x+3\right)-6\left(x-1\right)\left(x+2\right)=13\)
\(\Leftrightarrow x^3+3x^2+3x+1-x\left(x^2-9\right)-6\left(x^2+x-2\right)=13\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+9x-6x^2-6x+12=13\)
\(\Leftrightarrow-3x^2+6x=0\)
\(\Leftrightarrow-3\left(x^2-2\right)=0\)
\(\Leftrightarrow x^2-2=0\Leftrightarrow x^2=2\)
\(\Leftrightarrow x=\pm\sqrt{2}\)
\(25a^2-20ab+4b^2\)
= \(\left(5a\right)^2\) \(-2.5a.2b\) \(+\left(2b\right)^2\)
= \(\left(5a-2b\right)^2\)
\(=\left(5a\right)^2-2\cdot5\cdot2\cdot a\cdot b+\left(2b\right)^2=\left(5a-2b\right)^2\)
A=9x^2−6x+1
=(3x)^2−2.3x.1+1^2
=(3x−1)^2
B=(2x+3y)^2+(2x+3y)+1(2x+3y)2+(2x+3y)+1
=[(2x+3y)^2+2.(2x+3y).1/2+(1/2)^2]+3/4
=(2x+3y+1/2)^2+3/4
=(2x+3y+1)(2x+3y)+1
\(13+6\sqrt{3}\)
=(\(3^2+2.3.\sqrt{3}+\sqrt{3}^2\))+1
=\(\left(3+\sqrt{3}\right)^2+1\)