K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2018

\(A=\dfrac{x^2+10}{x^2+2}=\dfrac{x^2+2+8}{x^2+2}=1+\dfrac{8}{x^2+2}\text{ ≤}1+\dfrac{8}{2}=5\)

\(A_{Max}=5."="\)\(x=0\)

2 tháng 1 2018

\(A=-\dfrac{4}{x^2-4x+10}\\ =-\dfrac{4}{\left(x^2-2.x.2+4+6\right)}\\ =-\dfrac{4}{\left(x-2\right)^2+6}\)

\(\left(x-2\right)^2\ge0\\ \Rightarrow\left(x-2\right)^2+6\ge6\\ \Rightarrow\dfrac{4}{\left(x-2\right)^2+6}\le\dfrac{2}{3}\\ \Rightarrow A=-\dfrac{4}{\left(x-2\right)^2+6}\ge-\dfrac{2}{3}\)

Min A=-2/3 khi x=2

3 tháng 1 2018

\(C=\dfrac{2}{x^2+4x+5}=\dfrac{2}{\left(x+2\right)^2+1}\)

\(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1\)

\(\Rightarrow C\le2\)

Dấu ''='' xảy ra \(\Leftrightarrow x=-2\)

Vậy Min C = 2 kjhi x = -2

8 tháng 3 2018

\(\left(x+y\right)^2\ge4xy\) (1)

Chứng minh : \(x^2-2xy+y^2\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\ge4xy\forall x,y\)

a ) Áp dụng BĐT (1) ta có :

\(\left(x+10\right)^2\ge4.x.10=40x\)

\(\Rightarrow\dfrac{x}{\left(x+10\right)^2}\le\dfrac{x}{40x}=\dfrac{1}{40}\)

Dấu "=" xảy ra khi \(x=10.\)

Câu b tương tự

AH
Akai Haruma
Giáo viên
22 tháng 12 2021

Bạn coi lại xem có viết nhầm chỗ nào trong biểu thức không? Biểu thức này nội việc rút gọn thôi đã "xấu" rồi.

AH
Akai Haruma
Giáo viên
2 tháng 1 2021

Lời giải:

ĐK: $x\geq 0; x\neq 1$

\(A=\frac{\sqrt{x}-2}{(\sqrt{x}-1)(\sqrt{x}+1)}.\frac{(\sqrt{x}-1)^2}{2}-\frac{\sqrt{x}+2}{(\sqrt{x}-1)^2}.\frac{(\sqrt{x}-1)^2}{2}\)

\(=\frac{(\sqrt{x}-2)(\sqrt{x}-1)}{2(\sqrt{x}+1)}-\frac{\sqrt{x}+2}{2}=\frac{(\sqrt{x}-2)(\sqrt{x}-1)-(\sqrt{x}+2)(\sqrt{x}+1)}{2(\sqrt{x}+1)}=\frac{-6\sqrt{x}}{2(\sqrt{x}+2)}=\frac{-3\sqrt{x}}{\sqrt{x}+2}\)

Vì $x\geq 0$ nên $3\sqrt{x}\geq 0; \sqrt{x}+2>0$

$\Rightarrow \frac{3\sqrt{x}}{\sqrt{x}+2}\geq 0$

$\Rightarrow A\leq 0$ hay $A_{\max}=0$ khi $x=0$

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Bạn tham khảo lời giải tại đây:

Tìm GTLN của biểu thức: \(A=\left(\dfrac{x^2}{x^2-3x 2} \dfrac{x^2}{x^2-5x 6}\right):\dfrac{x^4 x^2 1}{x^2-4x 3}\) - Hoc24

AH
Akai Haruma
Giáo viên
17 tháng 2 2021

Lời giải:

ĐK: $x\neq 1;2;3$

\(A=x^2\left[\frac{1}{(x-1)(x-2)}+\frac{1}{(x-2)(x-3)}\right].\frac{(x-1)(x-3)}{x^4+x^2+1}\)

\(=x^2.\frac{x-3+x-1}{(x-1)(x-2)(x-3)}.\frac{(x-1)(x-3)}{x^4+x^2+1}=x^2.\frac{2(x-2)}{(x-1)(x-2)(x-3)}.\frac{(x-1)(x-3)}{x^4+x^2+1}=\frac{2x^2}{x^4+x^2+1}\)

Áp dụng BĐT AM-GM: $x^4+1\geq 2x^2$

$\Rightarrow A\leq \frac{2x^2}{2x^2+x^2}=\frac{2}{3}$

Vậy $A_{\max}=\frac{2}{3}$. Giá trị đạt tại $x^4=1$ hay $x=-1$ (do $x\neq 1$)

 

17 tháng 2 2021

Akai Haruma Giáo viên Chị chỉ em cách áp dụng AM-GM được k ạ ?