C/m : ( n + 3 )\(^3\) - ( n - 3 ) \(^{^{ }3}\) \(⋮\) 18 \(\forall\) n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Với n = 1 ta có 3 ⋮ 3.
Giả sử n = k ≥ 1 , ta có : k3 + 2k ⋮ 3 ( GT qui nạp).
Ta đi chứng minh : n = k + 1 cũng đúng:
(k+1)^3 + 2(k+1) = k^3 + 3k^2 + 3k + 1 + 2k + 2
= (k^3+2k) + 3(k^2+k+1)
Ta có : + (k^3+2k) ⋮ 3 ( theo gt trên)
+ 3(k^2+k+1) hiển nhiên chia hết cho 3
Vậy mệnh đề luôn chia hết cho 3.
b, Với n = 1 ta có 12 ⋮ 6.
Giả sử n = k ≥ 1 , ta có: 13k -1 ⋮ 6
Ta đi chứng minh : n = k+1 cũng đúng:
=> 13k.13 - 1 = 13(13k - 1) + 12.
Có: - 13(13k - 1) ⋮ 6 ( theo gt)
- 12⋮6 ( hiển nhiên)
> Vậy mệnh đề luôn đúng.
Ta đã có: \(n\in N\)*
Chứng minh theo phương pháp quy nạp toán học:
Với \(n=1\) thì \(A=1^3+2^3+3^3=36⋮9\)
Giả sử mệnh đề đúng với \(n=k\)(giả thiết quy nạp) thì ta chứng minh mệnh đề cũng đúng với \(n=k+1\)
Với \(n=k+1\Rightarrow A=\left(k+1\right)^3+\left(k+2\right)^3+\left(k+3\right)^3\)
\(=(k^3+3k^2+3k+1+k^3+6k^2+12k+1+k^3)+9k^2+27k+27\)\(=k^3+\left(k+1\right)^3+\left(k+2\right)^3+9\left(k^2+3k+3\right)\)
Ta có: \(k^3+\left(k+1\right)^3+\left(k+2\right)^3⋮9\) hiên nhiên \(9\left(k^2+3k+3\right)⋮9\)
Từ đó suy ra A chia hết cho 9 (n \(\in N\)*)
Bài 1:
abc chia hết cho 27
⇒100a+10b +c chia hết cho 27
⇒10.(100a+10b+c) chia hết cho 27
⇒1000a+100b+10c chia hết cho 27
Mà 999a chia hết cho 27
Vậy 100b+10c+a =bca chia hết cho 27
(Chúc bạn học tốt)
c) +) giả sử k chẵn--> k2 chẵn --> k2-k+1 lẻ
+) giả sử k lẻ --> k2 lẻ --> k2-k+1 lẻ
==> ko tồn tại k thuộc Z thỏa đề
d) sai
vì ví dụ x=-4<3 nhưng x2=(-4)2=16>9(ko thỏa đề)
\(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3⋮9\) (1)
\(A=n^3+\left(n^3+3n^2+3n+1\right)+\left(n^3+6n^2+12n+8\right)\)
\(A=3n^3+9n^2+15n+9\)
\(=3\left(n^3+3n^2+5n+3\right)\)
Đặt \(B=n^3+3n^2+5n+3\)
\(=n^3+n^2+2n^2+2n+3n+3\)
\(=n^2\left(n+1\right)+2n\left(n+1\right)+3\left(n+1\right)=\left(n+1\right)\left(n^2+2n+3\right)\)
\(=\left(n^2+2n\right)\left(n+1\right)+3\left(n+1\right)\)
\(=n\left(n+1\right)\left(n+2\right)+3\left(n+1\right)\)
Ta thấy \(n\left(n+1\right)\left(n+2\right)⋮3\) ( tích 3 số tự nhiên liên tiếp )
\(\Rightarrow3\left(n+1\right)⋮3\)
\(\Rightarrow B⋮3\)
\(\Rightarrow B=3k\left(k\in N\right)\)
Vậy \(A=3B=3.3k=9k⋮9\left(dpcm\right)\)
Ta có: \(\left(n+3\right)^3-\left(n-3\right)^3\)
\(=n^3+9n^2+27n+27-n^3+9n^2-27n+27\)
\(=18n^2+54\)
Vì \(18n^2⋮18;54⋮54\)
\(\Rightarrow18n^2+54⋮18\)
Vậy \(\left(n+3\right)^3-\left(n-3\right)^3⋮18\)