\(\frac{3}{x-1}\)\(=\frac{81}{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a)\(\left(\frac{3}{5}\right)^5.x=\left(\frac{3}{7}\right)^7\)
\(x=\left(\frac{3}{7}\right)^7\div\left(\frac{3}{7}\right)^5\)
\(x=\left(\frac{3}{7}\right)^2\)
\(x=\frac{9}{49}\)
Vậy...
b)\(\left(-\frac{1}{3}\right)^3.x=\left(\frac{1}{3}\right)^4\)
\(\left(-\frac{1}{3}\right)^3.x=\left(-\frac{1}{3}\right)^4\)
\(x=\left(-\frac{1}{3}\right)^4\div\left(\frac{-1}{3}\right)^3\)
\(x=-\frac{1}{3}\)
Vậy...
c)\(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
=>\(x-\frac{1}{2}=\frac{1}{3}\)
\(x=\frac{1}{3}+\frac{1}{2}\)
\(x=\frac{5}{6}\)
Vậy...
d)\(\left(x+\frac{1}{4}\right)^4=\left(\frac{2}{3}\right)^4\)
=>\(x+\frac{1}{4}=\frac{2}{3}\)
\(x=\frac{2}{3}-\frac{1}{4}\)
\(x=\frac{5}{12}\)
Vậy...
Phù, mãi mới xong, tk cho mk nha bn

Dễ thấy (\(\frac{3}{4}\)-81); (\(\frac{3^2}{5}\)-81); (\(\frac{3^3}{6}\)-81);... (\(\frac{3^{2007}}{2010}\)-81) có dạng (\(\frac{3^x}{3+x}\)-81) và x\(\varepsilon\){1;2;3;...2007}.
Nếu x=6 thì \(\frac{3^x}{3+x}\)-81=\(\frac{3^6}{3+6}\)-81=0
=> (\(\frac{3}{4}\)-81) (\(\frac{3}{4}\)-81)(\(\frac{3^3}{6}\)-81)...(\(\frac{3^6}{3+6}\)-81)...(\(\frac{3^{2007}}{2010}\)-81)=0
Mà |x-30|-6001=(\(\frac{3}{4}\)-81) (\(\frac{3}{4}\)-81)(\(\frac{3^3}{6}\)-81)...(\(\frac{3^6}{3+6}\)-81)...(\(\frac{3^{2007}}{2010}\)-81)
=>|x-30|-6001=0
=>|x-30|=6001
=>x-30=6001 hoặc x-30=-6001
=>x=6031 hoặc x=-5971
-------------------The end----------------
\(\text{|x - 30| - 6001 = }\left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)\left(\frac{3^3}{6}-81\right)...\left(\frac{3^{2007}}{2010}-81\right)\)
\(\Rightarrow\text{ |x - 30| - 6001 = }\left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)\left(\frac{3^3}{6}-81\right)...\left(\frac{3^6}{9}-3^4\right)...\left(\frac{3^{2007}}{2010}-81\right)\)
\(\Rightarrow\left|x-30\right|- 6001 = \left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)\left(\frac{3^3}{6}-81\right)...\left(3^4-3^4\right)...\left(\frac{3^{2007}}{2010}-81\right)\)
\(\Rightarrow|x - 30| - 6001 = \left(\frac{3}{4}-81\right)\left(\frac{3^2}{5}-81\right)\left(\frac{3^3}{6}-81\right)...0...\left(\frac{3^{2007}}{2010}-81\right)\)
\(\Rightarrow\text{|x - 30| - 6001 = }0\)
\(\Rightarrow\left|x-30\right|=6001\)
\(\Rightarrow x-30=6001\)hoặc \(x-30=-6001\)
\(\Rightarrow x=6031\)hoặc\(x=-5971\)
Vậy: x= 6031 hoặc x= -5971
(Nói thật thì mình mới lớp 7, đây có phải của lớp 8 không?)

=>x - 3 0 = 6001 hoặc x - 30 = -6001
=> x = 6031 hoặc x = -5971
BÀi nay không khó lắm
Dễ thấy vế bên phải bằng 0 vì \(\frac{3^6}{9}-81=0\)
=> lx - 30 l - 6001 = 0
=> lx - 30 l = 6001
Tự làm tiếp

mk muốn xem bài của mk đúng hay sai thôi !
chứ làm thì mk làm xong rồi !

Ta có \(1\frac{1}{2}=\frac{3}{2}\); \(2\frac{2}{3}=\frac{8}{3}\); \(3\frac{3}{4}=\frac{15}{4}\);.....;\(50\frac{50}{51}=\frac{50.51+50}{51}\)
=> \(\left(\frac{3}{2}+\frac{1}{2}\right)+\left(\frac{8}{3}+\frac{1}{3}\right)+.....+\left(\frac{50.51+50}{51}+\frac{1}{51}\right)\)
=> 2+3+.....+51=\(\frac{50.53}{2}\)=1325

a)
\(x=\left(\frac{3}{7}\right)^7:\left(\frac{3}{7}\right)^5\)
\(x=\left(\frac{3}{7}\right)^2=\frac{9}{49}\)
b)
\(-\frac{1}{27}\cdot x=\frac{1}{81}\)
\(x=\frac{1}{81}:\left(-\frac{1}{27}\right)\)
\(x=-\frac{1}{3}\)
c)
\(\left(x-\frac{1}{2}\right)^3=\left(\frac{1}{3}\right)^3\)
\(x-\frac{1}{2}=\frac{1}{3}\)
\(x=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}\)
d)
\(\left(x+\frac{1}{2}\right)^4=\left(\frac{2}{3}\right)^4\)
\(\orbr{\begin{cases}x+\frac{1}{2}=\frac{2}{3}\\x+\frac{1}{2}=\frac{-2}{3}\end{cases}}\)
\(\orbr{\begin{cases}x=\frac{2}{3}-\frac{1}{2}=\frac{1}{6}\\x=-\frac{2}{3}-\frac{1}{2}=-\frac{7}{6}\end{cases}}\)
Sửa lại câu a : ( nhìn sai số )
\(\frac{3^5}{5^5}\cdot x=\frac{3^7}{7^7}\)
\(x=\frac{3^7}{7^7}:\frac{3^5}{5^5}\)
\(x=\frac{3^7}{7^7}\cdot\frac{5^5}{3^5}\)
\(x=\frac{5^5\cdot3^2}{7^7}\)
\(x=\frac{28125}{823453}\)
\(\frac{3}{x-1}=\frac{81}{5}\Rightarrow81.\left(x-1\right)=3.5\)
\(\Rightarrow81x-81=15\)
\(\Rightarrow81x=96\)
\(x=\frac{32}{27}\)
\(\left(x-1\right).81=3.5\)
\(\left(x-1\right).81=15\)
\(\left(x-1\right)=\frac{5}{6}\)
\(x=\frac{5}{6}+1\)
\(x=\frac{11}{6}\)