Tính A, biết:
A = 2010/2011 + 2011/2012 +2012/2010
nhanh giúp mik nha
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{2012.2010+2013}{2011.2011+2012}\)
\(\Rightarrow A=\frac{\left(2011+1\right).\left(2011-1\right)+2013}{2011.2011+2012}\)
\(\Rightarrow A=\frac{2011\left(2011+1\right)-2011-1+2013}{2011.2011+2012}\)
\(\Rightarrow A=\frac{2011^2+2011-2011-1+2013}{2011^2+2012}\)
\(\Rightarrow A=\frac{2011^2-1+2013}{2011^2+2012}\)
\(\Rightarrow A=\frac{2011^2+2012}{2011^2+2012}=1\)
Vậy A = 1
A=2011^2012-2011^2011= 2011^2011 * 2011 -2011^2011= 2011^2011 *(2011-1)= 2011^2011 *2010
B=2011^2013-2011^2012=2011^2012*2011- 2011^2012= 2011^2012 *(2011-1) = 2011^2012 *2010
vì 2011^2011*2010 < 2011^2012*2010 nên A<B
Ta có : 2011^2013 x M = (2010^2012 x 2011 + 2011^2013)^2013 > (2010^2013 + 2011^2013)^2013 = N x (2010^2013 + 2011^2013)
Do đó: 2011^2013 x M > N x (2010^2013 + 2011^2013)
<=> M > N x [(2010/2011)^2013 + 1] ==> M > N (điều phải chứng minh)
a)
Ta có a > b vì b > 3 còn a < 3
b)
a. Ta có : 1/51 + 1/52 + 1/53 +...+ 1/60 < 1/51 x 10 < 1/50 x 10 = 1/5
=> 1/51 + 1/52 +1/53 +...+1/60 < 1/5
b. Ta có : 1/51 + 1/52 + 1/53 +...+ 1/60 > 1/60 x 10 = 1/6
=> 1/51 + 1/52 +1/53 +...+ 1/60 > 1/6
\(\Leftrightarrow\left(\frac{x-1}{2012}-1\right)+\left(\frac{x-2}{2011}-1\right)+...+\left(\frac{x-2012}{1}-1\right)=0\)
\(\Leftrightarrow\frac{x-2013}{2012}+\frac{x-2013}{2011}+...+\frac{x-2013}{1}=0\)
\(\Leftrightarrow\left(x-2013\right)\left(\frac{1}{2012}+\frac{1}{2011}+....+1\right)=0\)
\(\Leftrightarrow x-2013=0\)(because 1/2012 +1/2011+...+1 luôn lớn hơn 0
\(\Leftrightarrow x=2013\)
Vậy ........
Ta có A=2010/2011+2011/2012+2012/2010
= (2010/2011+1/2011)+1+(2011/2012+1/2012)
=1+1+1=3
=> A=3
tích tui ik