K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 8 2018

cho mình biết nghiệm mình giải cho

8 tháng 8 2018

Tìm điều kiện mà

27 tháng 8 2021

a, \(x+1\ge0\Leftrightarrow x\ge-1\)

b, \(1-2x\ge0\Leftrightarrow x\le\dfrac{1}{2}\)

c, \(\left\{{}\begin{matrix}x+1\ge0\\x-2\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge-1\\x\ge2\end{matrix}\right.\Leftrightarrow x\ge2\)

27 tháng 8 2021

d, \(\left\{{}\begin{matrix}2-3x\ge0\\1-2x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{2}{3}\\x\le\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow x\le\dfrac{1}{2}\)

e, \(\left\{{}\begin{matrix}\sqrt{3}-2x\ge0\\x-1\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le\dfrac{\sqrt{3}}{2}\\x\ne1\end{matrix}\right.\Leftrightarrow x\le\dfrac{\sqrt{3}}{2}\)

AH
Akai Haruma
Giáo viên
11 tháng 7 2023

Lời giải:
a.

\(\left\{\begin{matrix} x\neq 0\\ 2x-1\geq 0\\ x^2-3x+2=(x-1)(x-2)\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 0\\ x\geq \frac{1}{2}\\ x\neq 1; x\neq 2\end{matrix}\right.\)

$\Leftrightarrow x\geq \frac{1}{2}; x\neq 1; x\neq 2$
b. \(\left\{\begin{matrix} x^2-1=(x-1)(x+1)\neq 0\\ 7-2x\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq \pm 1\\ x\leq \frac{7}{2}\end{matrix}\right.\)

c.

\(\left\{\begin{matrix} x\neq 0\\ 4-2x+x^2\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\neq 0\\ (x-1)^2+3\neq 0\end{matrix}\right.\Leftrightarrow x\neq 0\)

d.

\(\left\{\begin{matrix} 25-x^2=(5-x)(5+x)\geq 0\\ x\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -5\leq x\leq 5\\ x\geq 0\end{matrix}\right.\Leftrightarrow 0\leq x\leq 5\)

 

11 tháng 7 2023

a) \(y=\dfrac{1}{x}-\dfrac{\sqrt[]{2x-1}}{x^2-3x+2}\)

Điều kiện \(\) \(2x-1\ge0;x\ne0;x^2-3x+2\ne0\)

\(\Leftrightarrow x\ge\dfrac{1}{2};x\ne0;\left(x-1\right)\left(x-2\right)\ne0\)

\(\Leftrightarrow x\ge\dfrac{1}{2};x\ne0;x\ne1;x\ne2\)

27 tháng 7 2021

giúp mình với ahuhuuu

24 tháng 9 2021

1) \(ĐK:x\in R\)

2) \(ĐK:x< 0\)

3) \(ĐK:x\in\varnothing\)

4) \(=\sqrt{\left(x+1\right)^2+2}\) 

\(ĐK:x\in R\)

5) \(=\sqrt{-\left(a-4\right)^2}\)

\(ĐK:x\in\varnothing\)

 

a: ĐKXĐ: x^2-2x<>0 và x^2-1>0

=>(x>1 và x<>2) hoặc x<-1

b: ĐKXĐ: x+1>0 và 5-3x>0

=>x>-1 và 3x<5

=>-1<x<5/3

c: DKXĐ: 5x+3>=0 và 3-x>0

=>x>=-3/5 và x<3

=>-3/5<=x<3

d: ĐKXĐ: 4-x^2>0 và 1+x>=0

=>x^2<4 và x>=-1

=>-2<x<2 và x>=-1

=>-1<=x<2

e: ĐKXĐ: 2-3x<>0 và 1-6x>0

=>x<>2/3 và x<1/6

=>x<1/6

7 tháng 2 2021

a, ĐKXĐ : \(x\ge\dfrac{1}{2}\)

 PT <=> 2x - 1 = 5

<=> x = 3 ( TM )

Vậy ...

b, ĐKXĐ : \(x\ge5\)

PT <=> x - 5 = 9

<=> x = 14 ( TM )

Vậy ...

c, PT <=> \(\left|2x+1\right|=6\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=6\\2x+1=-6\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)

Vậy ...

d, PT<=> \(\left|x-3\right|=3-x\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=x-3\\x-3=3-x\end{matrix}\right.\)

Vậy phương trình có vô số nghiệm với mọi x \(x\le3\)

e, ĐKXĐ : \(-\dfrac{5}{2}\le x\le1\)

PT <=> 2x + 5 = 1 - x

<=> 3x = -4

<=> \(x=-\dfrac{4}{3}\left(TM\right)\)

Vậy ...

f ĐKXĐ : \(\left[{}\begin{matrix}x\le0\\1\le x\le3\end{matrix}\right.\)

PT <=> \(x^2-x=3-x\)

\(\Leftrightarrow x=\pm\sqrt{3}\) ( TM )

Vậy ...

 

 

7 tháng 2 2021

a) \(\sqrt{2x-1}=\sqrt{5}\)          (x \(\ge\dfrac{1}{2}\))

<=> 2x - 1 = 5

<=> x = 3 (tmđk)

Vậy S = \(\left\{3\right\}\)

b) \(\sqrt{x-5}=3\)           (x\(\ge5\))

<=> x - 5 = 9

<=> x = 4 (ko tmđk)

Vậy x \(\in\varnothing\)

c) \(\sqrt{4x^2+4x+1}=6\)          (x \(\in R\))

<=> \(\sqrt{\left(2x+1\right)^2}=6\)

<=> |2x + 1| = 6

<=> \(\left[{}\begin{matrix}\text{2x + 1=6}\\\text{2x + 1}=-6\end{matrix}\right.< =>\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-7}{2}\end{matrix}\right.\)(tmđk)

Vậy S = \(\left\{\dfrac{5}{2};\dfrac{-7}{2}\right\}\)

 

1: ĐKXĐ: 2-3x>=0

=>x<=2/3

2: ĐKXĐ: -3x^2>=0

=>x^2<=0

=>x=0

3: ĐKXĐ: -2023x^3>=0

=>x^3<=0

=>x<=0

4: ĐKXĐ: -2(x-5)>=0

=>x-5<=0

=>x<=5

5: ĐKXĐ: -5/2-2x>=0

=>2-2x<0

=>2x>2

=>x>1

6: ĐKXĐ: (x^2+1)(3-2x)>=0

=>3-2x>=0

=>-2x>=-3

=>x<=3/2

7: ĐKXĐ: (-x^2-1)(3-x)>=0

=>(x^2+1)(x-3)>=0

=>x-3>=0

=>x>=3

a: ĐKXĐ: \(\left[{}\begin{matrix}x\ge3\\x\le2\end{matrix}\right.\)

b: ĐKXĐ: \(\left[{}\begin{matrix}x>\dfrac{2\sqrt{14}}{7}\\x< -\dfrac{2\sqrt{14}}{7}\end{matrix}\right.\)

c: ĐKXĐ: \(x=\dfrac{1}{3}\)

d: ĐKXĐ: \(-\dfrac{2}{3}< x\le\sqrt{3}\)