K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2018

mấy bạn hãy giúp mình

a) Ta có: \(7x^2-28=0\)

\(\Leftrightarrow7\left(x^2-4\right)=0\)

\(\Leftrightarrow7\left(x-2\right)\left(x+2\right)=0\)

mà 7>0

nên (x-2)(x+2)=0

hay \(\left[{}\begin{matrix}x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{2;-2\right\}\)

b) Ta có: \(\dfrac{2}{3}x\left(x^2-4\right)=0\)

\(\Leftrightarrow\dfrac{2}{3}x\left(x-2\right)\left(x+2\right)=0\)

mà \(\dfrac{2}{3}>0\)

nên x(x-2)(x+2)=0

hay \(\left[{}\begin{matrix}x=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{0;-2;2\right\}\)

c) Ta có: \(2x\left(3x-5\right)-\left(5-3x\right)=0\)

\(\Leftrightarrow2x\left(3x-5\right)+\left(3x-5\right)=0\)

\(\Leftrightarrow\left(3x-5\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x=5\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{1}{2}\end{matrix}\right.\)

Vậy: \(x\in\left\{\dfrac{5}{3};-\dfrac{1}{2}\right\}\)

d) Ta có: \(\left(2x-1\right)^2-25=0\)

\(\Leftrightarrow\left(2x-1-5\right)\left(2x-1+5\right)=0\)

\(\Leftrightarrow\left(2x-6\right)\left(2x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-6=0\\2x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy: \(x\in\left\{3;-2\right\}\)

11 tháng 1 2021

a,7x2 - 28 = 0

=> 7x2 = 28 => x2 = 4 => x = 2

b,2/3x(x2 - 4) = 0

=>2/3x(x - 2)(x + 2) = 0

=> x ∈ {0 ; 2 ; -2}

c,2x(3x - 5) - (5 - 3x) = 0

= 2x(3x - 5) + (3x - 5)

= (3x - 5)(2x + 1) = 0

=> x ∈ { 5/3 ; -1/2}

d, (2x - 1)2 - 25 = 0

=> (2x - 4)(2x - 6) = 0

=> x ∈ {2 ;3}

25 tháng 7 2021

a) (x-2)3+6(x+1)2-x3+12=0

\(\Rightarrow\)x3-6x2+12x-8+6(x2+2x+1)-x3+12=0

\(\Rightarrow\)x3-6x2+12x-8+6x2+12x+6-x3+12=0

\(\Rightarrow\)24x+10=0

\(\Rightarrow\)24x=-10

\(\Rightarrow\)x=\(\dfrac{-10}{24}=\dfrac{-5}{12}\)

25 tháng 7 2021

b)(x-5)(x+5)-(x+3)2+3(x-2)2=(x+1)2-(x-4)(x+4)+3x2

\(\Rightarrow\)x2-25-(x2+6x+9)+3(x2-4x+4)=x2+2x+1-(x2-16)+3x2

\(\Rightarrow\)x2​-25-x2-6x-9+3x2-12x+12=x2+2x+1-x2+16+3x2

\(\Rightarrow\)3x2-18x-22=3x2+2x+17

\(\Rightarrow\)3x2-18x-22-3x2-2x-17=0

\(\Rightarrow\)-20x-39=0

\(\Rightarrow\)-20x=39

\(\Rightarrow\)x=\(-\dfrac{39}{20}\)

13 tháng 4 2021

a, \(\left(x^2-5x+7\right)^2-\left(2x-5\right)^2=0\)

\(\Leftrightarrow\left(x^2-5x+7-2x+5\right)\left(x^2-5x+7+2x-5\right)=0\)

\(\Leftrightarrow\left(x^2-7x+12\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-3\right)\left(x-1\right)\left(x-2\right)=0\Leftrightarrow x=1;x=2;x=3;x=4\)

Vậy tập nghiệm phương trình là S = { 1 ; 2 ; 3 ; 4 } 

b, \(\left|2x-1\right|=5\Leftrightarrow\left[{}\begin{matrix}2x-1=5\\2x-1=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\end{matrix}\right.\)

Vậy tập nghiệm của phương trình là S = { -2 ; 3 } 

c, \(\left|2x-1\right|=\left|x+5\right|\Leftrightarrow\left(2x-1\right)^2=\left(x+5\right)^2\)

\(\Leftrightarrow\left(2x-1\right)^2-\left(x+5\right)^2=0\Leftrightarrow\left(2x-1-x-5\right)\left(2x-1+x+5\right)=0\Leftrightarrow x=6;x=-\dfrac{4}{3}\)

Vậy tập nghiệm của phương trình là S = { -4/3 ; 6 } 

d, \(\left|3x+1\right|=x-2\)

TH1 : \(3x+1=x-2\Leftrightarrow2x=-3\Leftrightarrow x=-\dfrac{3}{2}\)

TH2 : \(3x+1=-x+2\Leftrightarrow4x=1\Leftrightarrow x=\dfrac{1}{4}\)

Vậy tập nghiệm của phương trình là S = { -3/2 ; 1/4 } 

các ý còn lại tương tự 

a) Ta có: \(\left(x^2-5x+7\right)^2-\left(2x-5\right)^2=0\)

\(\Leftrightarrow\left(x^2-5x+7-2x+5\right)\left(x^2-5x+7+2x-5\right)=0\)

\(\Leftrightarrow\left(x^2-7x+12\right)\left(x^2-3x+2\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-4\right)\left(x-1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\\x-1=0\\x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\\x=1\\x=2\end{matrix}\right.\)

Vậy: S={3;4;1;2}

20 tháng 7 2021

a.   2x+\(\dfrac{4}{5}\)=0 hoặc 3x-\(\dfrac{1}{2}\)=0

2x=- 4/5 hoặc 3x=1/2

x=-2/5 hoặc x=\(\dfrac{1}{6}\)

b. x-\(\dfrac{2}{5}\)=0 hoặc x+\(\dfrac{4}{7}\)=0

x=2/5 hoặc x=-\(\dfrac{4}{7}\)

d. x(1+5/8-12/16)=1

\(\dfrac{7}{8}\)x=1=> x=8/7

a: =>x^2-25-x^2-3x=10

=>-3x=35

=>x=-35/3

b: =>4x^2-9-4(x^2+4x+4)=5

=>4x^2-9-4x^2-16x-16-5=0

=>-16x-30=0

=>x=-15/8

c: =>9x^2+45x-9x^2+4=7

=>45x=3

=>x=1/15

d: =>x^3+3x^2+3x+1-x^3-3x^2+5x=8

=>8x=7

=>x=7/8

25 tháng 12 2021

a: \(\Leftrightarrow\left(x+2\right)\left(12-x\right)=0\)

\(\Leftrightarrow x\in\left\{-2;12\right\}\)

b: \(\Leftrightarrow\left(2x+5\right)\left(x-1\right)=0\)

\(\Leftrightarrow x\in\left\{-\dfrac{5}{2};1\right\}\)

19 tháng 12 2021

g: \(\Leftrightarrow\left(x^2+6x+5\right)\left(x^2+6x+8\right)-4=0\)

\(\Leftrightarrow\left(x^2+6x\right)^2+13\left(x^2+6x\right)+36=0\)

\(\Leftrightarrow\left(x+3\right)^2\left(x^2+6x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\sqrt{5}-3\\x=-\sqrt{5}-3\end{matrix}\right.\)