Cho\(\Delta ABC\perp A\)kẻ đường phân giác BD biết BD = \(6\sqrt{5}\)và \(5DA=3DC\). Tính BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D 1 2 6v5
( v là căn nha bạn ; Ví dụ 8v5 là 8căn5 nha )
Ta có : \(SinABC=\frac{AC}{BC}\)
Mà : gócABC = 2.gócB2 ( BD là đường phân giác )
Do đó : \(SinABC=2.SinB_2\)
\(\Rightarrow sinB_2=\frac{1}{2}SinABC=\frac{1}{2}.\frac{AC}{BC}=\frac{AC}{2BC}\)
Ta có : \(SinB_1=\frac{AD}{BD}\)
Mà : góc B1 = góc B2 ( BD là đường phân giác )
\(\Rightarrow\frac{AD}{BD}=\frac{AC}{2BC}\)
\(\Rightarrow2BC=\frac{AC.BD}{AD}\)
\(\Rightarrow BC=\frac{AC.BD}{2.AD}=\frac{\left(AD+DC\right).6v5}{2.AD}\) ( 1 )
Ta có : 5AD = 3DC ( gt )
\(\Rightarrow AD=\frac{3DC}{5}=\frac{3}{5}DC\)
Thay : \(AD=\frac{3}{5}DC\) vào ( 1 ) Ta được :
\(BC=\frac{6v5.\left(\frac{3}{5}DC+DC\right)}{2.\left(\frac{3}{5}DC\right)}\)
\(BC=\frac{6v5.\left(\frac{8}{5}DC\right)}{\frac{6}{5}DC}\)
\(BC=\frac{\frac{48v5}{5}DC}{\frac{6}{5}DC}\)
\(BC=\frac{48v5}{6}\)
\(BC=8v5\)
Vậy BC = 8v5 cm
Học tốt !!!
a) Nối A và D lại, ta đc: ΔABD & ΔADC
Ta có: D là trung điểm BC => BD=DC
Xét ΔABD & ΔADC có:
AB=AC(gt) ; BD=DC ; AD=AD
=> ΔADB = ΔADC
1a. Xét △ABD và △ACD có:
\(AB=BC\left(gt\right)\)
\(\hat{BAD}=\hat{CAD}\left(gt\right)\)
\(AD\) chung
\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)
b/ Từ a suy ra \(BD=CD\) (hai cạnh tương ứng).
2a. Xét △ABD và △EBD có:
\(AB=BE\left(gt\right)\)
\(\hat{ABD}=\hat{EBD}\left(gt\right)\)
\(BD\) chung
\(\Rightarrow\Delta ABD=\Delta EBD\left(c.g.c\right)\)
b/ Từ a suy ra \(\hat{DEB}=90^o\) (góc tương ứng với góc A).
c/ Xét △ABI và △EBI có:
\(AB=BE\left(gt\right)\)
\(\hat{ABI}=\hat{EBI}\left(do\text{ }\hat{ABD}=\hat{EBD}\right)\)
\(BI\) chung
\(\Rightarrow\Delta ABI=\Delta EBI\left(c.g.c\right)\)
\(\Rightarrow\hat{AIB}=\hat{EIB}=\dfrac{180^o}{2}=90^o\)
Vậy: \(BD\perp AE\)
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Xét ΔABC có BD là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)(Tính chất đường phân giác của tam giác)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=AC(D nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó: \(\dfrac{AD}{6}=\dfrac{1}{2}\)
hay AD=3(cm)
Vậy: AD=3cm
a) Xét ΔBED và ΔBAD có
BE=BA(gt)
\(\widehat{EBD}=\widehat{ABD}\)(BD là tia phân giác của \(\widehat{ABE}\))
BD chung
Do đó: ΔBED=ΔBAD(c-g-c)
a) Tam giác ABC có BD là đg pg=>\(\frac{AB}{BC}=\frac{AD}{DC}\)=>\(\frac{AB+BC}{BC}=\frac{AD+DC}{DC}\)hay \(\frac{50}{20}=\frac{30}{DC}\)=>DC=12(cm)
=>AC-DC=ADhay 30-12=18(cm)
A B C K D H E
Xét \(\Delta ABK\)có BE vừa là phân giác vừa là đường cao nên \(\Delta ABK\)cân tại B
\(\Rightarrow\)\(\widehat{BAK}=\widehat{BKA}\)
Ta có :
\(\widehat{BAK}+\widehat{KAC}=90^o\)( 1 )
\(\widehat{AKB}+\widehat{HAK}=90^o\)( 2 )
Từ ( 1 ) và ( 2 ) \(\Rightarrow\)\(\widehat{KAC}=\widehat{HAK}\)( cùng phụ với hai góc bằng nhau )
Từ đó suy ra : AK là tia phân giác của \(\widehat{HAC}\)