Tìm max
A= -125+18x-x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=-x^2-5\)
Vì \(-x^2\le0\Leftrightarrow-x^2-5\le-5\)
Vậy \(A_{max}=-5\Leftrightarrow x=0\)
a: Ta có: \(A=2x^2+12x+11\)
\(=2\left(x^2+6x+\dfrac{11}{2}\right)\)
\(=2\left(x^2+6x+9-\dfrac{7}{2}\right)\)
\(=2\left(x+3\right)^2-7\ge-7\forall x\)
Dấu '=' xảy ra khi x=-3
\(A=2\left(x^2+6x+36\right)-61=2\left(x+6\right)^2-61\ge-61\\ A_{min}=-61\Leftrightarrow x=-6\\ B=-\left(x^2-18x+81\right)+100=-\left(x-9\right)^2+100\le100\\ B_{max}=100\Leftrightarrow x=9\)
a: Ta có: \(2x^3-18x=0\)
\(\Leftrightarrow2x\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
b: Ta có: \(\left(3x-2\right)\left(2x+1\right)-6x\left(x+2\right)=11\)
\(\Leftrightarrow6x^2+3x-4x-2-6x^2-12x=11\)
\(\Leftrightarrow-13x=13\)
hay x=-1
c: Ta có: \(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)=3\left(1-x^2\right)\)
\(\Leftrightarrow x^3-3x^2+3x-1-x^3-8=3-3x^2\)
\(\Leftrightarrow3x=12\)
hay x=4
a) 2x3-18x=0
⇔ 2x(x2-9)=0
⇔ 2x(x-3)(x+3)=0
⇔ \(\left\{{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
b)(3x-1)(2x+1)-6x(x+2)=11
⇔ 6x2+x-1-6x2-12x=11
⇔ -11x=12
\(\Leftrightarrow x=-\dfrac{12}{11}\)
c) (x-1)3-(x+2).(x2-2x+4)=3.(1-x2)
⇔ x3-3x2+3x-1-x3-8-3+3x2=0
⇔ 3x=12
⇔ x=4
1.
\(G=\dfrac{2}{x^2+8}\le\dfrac{2}{8}=\dfrac{1}{4}\)
\(G_{max}=\dfrac{1}{4}\) khi \(x=0\)
\(H=\dfrac{-3}{x^2-5x+1}\) biểu thức này ko có min max
2.
\(D=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}=2-\dfrac{3}{\left(x-4\right)^2+6}\ge2-\dfrac{3}{6}=\dfrac{3}{2}\)
\(D_{min}=\dfrac{3}{2}\) khi \(x=4\)
\(E=\dfrac{4x^4-x^2-1}{\left(x^2+1\right)^2}=\dfrac{-\left(x^4+2x^2+1\right)+5x^4+x^2}{\left(x^2+1\right)^2}=-1+\dfrac{5x^4+x^2}{\left(x^2+1\right)^2}\ge-1\)
\(E_{min}=-1\) khi \(x=0\)
\(G=\dfrac{3\left(x^2-4x+5\right)-5}{x^2-4x+5}=3-\dfrac{5}{\left(x-2\right)^2+1}\ge3-\dfrac{5}{1}=-2\)
\(G_{min}=-2\) khi \(x=2\)
Với mọi số thực không âm a, b ta luôn có:
\(\left(a-b\right)^2\ge0\Leftrightarrow2ab\le a^2+b^2\)
\(\Leftrightarrow a^2+2ab+b^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow\left(a+b\right)^2\le2\left(a^2+b^2\right)\)
\(\Leftrightarrow a+b\le\sqrt{2\left(a^2+b^2\right)}\)
Áp dụng:
a.
\(\sqrt{x-5}+\sqrt{23-x}\le\sqrt{2\left(x-5+23-x\right)}=6\)
Dấu "=" xảy ra khi \(x=14\)
b.
\(\sqrt{x-3}+\sqrt{19-x}\le\sqrt{2\left(x-3+19-x\right)}=4\sqrt{2}\)
Dấu "=" xảy ra khi \(x=11\)
$A=x^2+y^2-6x+4y+20=(x^2-6x+9)+(y^2+4y+4)+7$
$=(x-3)^2+(y+2)^2+7\geq 0+0+7=7$
Vậy $A_{\min}=7$. Giá trị này đạt tại $(x-3)^2=(y+2)^2=0$
$\Leftrightarrow x=3; y=-2$
---------------------
$B=9x^2+y^2+2z^2-18x+4z-6y+30$
$=(9x^2-18x+9)+(y^2-6y+9)+(2z^2+4z+2)+10$
$=9(x^2-2x+1)+(y^2-6y+9)+2(z^2+2z+1)+10$
$=9(x-1)^2+(y-3)^2+2(z+1)^2+10\geq 10$
Vậy $B_{\min}=10$. Giá trị này đạt tại $(x-1)^2=(y-3)^2=(z+1)^2$
$\Leftrightarrow x=1; y=3; z=-1$
$C=x^2+y^2+z^2-xy-yz-xz+3$
$2C=2x^2+2y^2+2z^2-2xy-2yz-2xz+6$
$=(x^2-2xy+y^2)+(y^2-2yz+z^2)+(x^2-2xz+z^2)+6$
$=(x-y)^2+(y-z)^2+(z-x)^2+6\geq 6$
$\Rightarrow C\geq 3$
Vậy $C_{\min}=3$. Giá trị này đạt tại $x-y=y-z=z-x=0$
$\Leftrihgtarrow x=y=z$
--------------------------------------
$D=5x^2+2y^2+4xy-2x+4y+2021$
$=2(y^2+2xy+x^2)+3x^2-2x+4y+2021$
$=2(x+y)^2+4(x+y)+3x^2-6x+2021$
$=2(x+y)^2+4(x+y)+2+3(x^2-2x+1)+2016$
$=2[(x+y)^2+2(x+y)+1]+3(x^2-2x+1)+2016$
$=2(x+y+1)^2+3(x-1)^2+2016\geq 2016$
Vậy $D_{\min}=2016$ khi $x+y+1=x-1=0$
$\Leftrightarrow x=1; y=-2$