K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2018

Ta có :

\(x^2+y\left(2x-y\right)-x^2\)

\(=z^2+2xy-y^2-x^2\)

\(=z^2-\left(x^2-2xy+y^2\right)\)

\(=z^2-\left(x-y\right)^2\)

\(=\left(z+x-y\right)\left(z-x+y\right)\)

\(\Rightarrow\left(z+x-y\right)\left(z-x+y\right)⋮\left(x-y+z\right)\)

\(\Rightarrow z^2+y\left(2x-y\right)-x^2⋮x-y+z\) (đpcm)

11 tháng 6 2018

Bạn thử khai triển hết vế sai đi

2 tháng 8 2017

surf trc khi hỏi

2 tháng 8 2017

là sao bạn

25 tháng 9 2018

Ta có:

\(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=\left(y+z-2x\right)^2+\left(z+x-2y\right)^2+\left(x+y-2z\right)^2\)

\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=6x^2+6y^2+6z^2-6xy-6yz-6zx\)

\(\Rightarrow4x^2+4y^2+4z^2-4xy-4yz-4zx=0\)

\(\Rightarrow2x^2+2y^2+2z^2-2xy-2yz-2zx=0\)

\(\Rightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-y\right)^2=0\\\left(y-z\right)^2=0\\\left(z-x\right)^2=0\end{cases}}\Rightarrow x=y=z\)

M = x.√[(2008+y²).(2008+z²)\(2008+x²)] + y.√[(2008+x²).(2008+z²)\(2008+y²)] + z.√[(2008+y²).(2008+x²)\(2008+z²)]

ta có:
2008 + x² = xy + xz + yz + x²
2008 + x² = (x+y).(x+z)
tương tự: 2008 + y² = (x+y).(y+z) và 2008 + z² = (z+y).(x+z)
chỉ việc thay vào rùi rút gọn thui

=> M = x.√[(x+y).(y+z).(x+z).(z+y)\ (x+y).(x+z)] + y.√[(x+y).(x+z).(x+z).(z+y)\(y+x).(y+z)] + z.√[(x+y).(x+z).(y+z).(y+x)\(x+z).(z+y)]

=> M = x.|y+z| + y.|z+x| + z.|x+y|
=> M = 2.2008

9 tháng 12 2018

Thay \(xy+yz+xz=2018\) ta được:

\(\left\{{}\begin{matrix}2018+x^2=x^2+xy+yz+xz=\left(x+y\right)\left(x+z\right)\\2018+y^2=y^2+xy+yz+xz=\left(y+z\right)\left(x+y\right)\\2018+z^2=z^2+xy+yz+xz=\left(x+z\right)\left(y+z\right)\end{matrix}\right.\)

Sau đó thay vào lần lượt đề bài là được