Rút gọn
\(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-2\right)^2+\left(y-z\right)^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hầy mình không nghĩ lớp 7 đã phải làm những bài biến đổi như thế này. Cái này phù hợp với lớp 8-9 hơn.
1.
Đặt $x^2-y^2=a; y^2-z^2=b; z^2-x^2=c$.
Khi đó: $a+b+c=0\Rightarrow a+b=-c$
$\text{VT}=a^3+b^3+c^3=(a+b)^3-3ab(a+b)+c^3$
$=(-c)^3-3ab(-c)+c^3=3abc$
$=3(x^2-y^2)(y^2-z^2)(z^2-x^2)$
$=3(x-y)(x+y)(y-z)(y+z)(z-x)(z+x)$
$=3(x-y)(y-z)(z-x)(x+y)(y+z)(x+z)$
$=3.4(x-y)(y-z)(z-x)=12(x-y)(y-z)(z-x)$
Ta có đpcm.
Bài 2:
Áp dụng kết quả của bài 1:
Mẫu:
$(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3=3(x-y)(y-z)(z-x)(x+y)(y+z)(z+x)=3(x-y)(y-z)(z-x)(1)$
Tử:
Đặt $x-y=a; y-z=b; z-x=c$ thì $a+b+c=0$
$(x-y)^3+(y-z)^3+(z-x)^3=a^3+b^3+c^3$
$=(a+b)^3-3ab(a+b)+c^3=(-c)^3-3ab(-c)+c^3=3abc$
$=3(x-y)(y-z)(z-x)(2)$
Từ $(1);(2)$ suy ra \(\frac{(x-y)^3+(y-z)^3+(z-x)^3}{(x^2-y^2)^3+(y^2-z^2)^3+(z^2-x^2)^3}=1\)
\(x+y+z=0\Leftrightarrow\left(x+y+z\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2=-2\left(xy+yz+zx\right)\)
\(P=\dfrac{x^2+y^2+z^2}{2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)}=\dfrac{x^2+y^2+z^2}{2\left(x^2+y^2+z^2\right)+x^2+y^2+z^2}=\dfrac{1}{3}\)
\(a,\left(x+y\right)^2+\left(x-y\right)^2=x^2+2xy+y^2+x^2-2xy+y^2=2\left(x^2+y^2\right)\)\(b,2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2=2x^2-2y^2+x^2+2xy+y^2+x^2-2xy+y^2=3x^2\)\(c,\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)=\left[\left(x-y+z\right)-\left(z-y\right)\right]^2=\left(x-2y\right)^2\)
a) \(\left(x+y\right)^2+\left(x-y\right)^2\)
=\(\left(x^2+2xy+y^2\right)+\left(x^2-2xy+y^2\right)\)
=\(x^2+2xy+y^2+x^2-2xy+y^2\)
\(2x^2+2y^2=2\left(x^2+y^2\right)\)
b) \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
\(=\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
=\(\left[\left(x-y\right)+\left(x+y\right)\right]^2\)
= \(\left(x-y+x+y\right)^2\)
\(=2x^2\)
c) \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)\)
\(=\left(x-y+z\right)^2-2\left(x-y+z\right)\left(z-y\right)+\left(z-y\right)^2\)
\(=\left[\left(x-y+z\right)-\left(z-y\right)\right]^2\)
= \(\left(x-y+z-z+y\right)^2=x^2\)
\(a,2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
\(=2\left(x^2-y^2\right)+x^2+2xy+y^2+x^2-2xy+y^2\)
\(=2x^2-2y^2+x^2+2xy+y^2+x^2-2xy+y^2\)
\(=4x^2\)
a,2(x-y)(x+y)+(x+y)2+(x-y)2
=2(x2-y2)+x2+2xy+y2+x2-2xy+y2
=4x2
b,=x2
\(=\left[\left(x-y-z\right)+\left(y-z\right)\right]^2\)
\(=\left(x-2z\right)^2\)
(x - y - z)2 + (y - z)2 + 2(y - z).(x - y - z)
= (x - y - z)2 + 2(y - z).(x - y - z) + (y - z)2
= (x - y - z + y - z)2
=(x - 2z)2
~ Học tốt ~
\(\left(x+y+z\right)^2+\left(x-y\right)^2+\left(x-2\right)^2+\left(y-z\right)^2\)
\(=x^2+y^2+z^2+2xy+2yz+2xz+x^2-2xy+y^2+x^2-4x+4\) \(+y^2-2yz+z^2\)
\(=3x^2+3y^2+2z^2+2xz-4x\)
học tốt