tìm số tự nhiên x , biết rằng ( x - 5 ) mũ 4 = ( x - 5 ) mũ 6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 9,
62x73+36x33=36x73+36x27=36(73+27)=36x100=3600.
197-\([\)6x(5-1)2+20220\(]\):5=197-\([\)6x16+1\(]\):5=197-97:5=197-97/5=888/5.
Bài 10,
21-4x=13
=>4x=21-13=8
=>x=8:4=2.
30:(x-3)+1=45:43=42=16
=>30:(x-3)=16-1=15
=>x-3=30:15=2
=>x=2+3=5.
(x-1)3+5x6=38
=>(x-1)3+30=38
=>(x-1)3=38-30=8=23
=>x-1=2
=>x=3.
Bài 1:
2\(x\) = 4
2\(^x\) = 22
\(x=2\)
Vậy \(x=2\)
Bài 2:
2\(^x\) = 8
2\(^x\) = 23
\(x=3\)
Vậy \(x=3\)
a) \(5\left(x+7\right)-10=2^3\cdot5\)
\(\Rightarrow5\left(x+7\right)-10=40\)
\(\Rightarrow5\left(x+7\right)=40+10\)
\(\Rightarrow x+7=\dfrac{50}{5}\)
\(\Rightarrow x+7=10\)
\(\Rightarrow x=10-7\)
\(\Rightarrow x=3\)
b) \(9x-2\cdot3^2=3^4\)
\(\Rightarrow9x-18=81\)
\(\Rightarrow9x=81+18\)
\(\Rightarrow9x=99\)
\(\Rightarrow x=\dfrac{99}{9}\)
\(\Rightarrow x=11\)
c) \(5^{25}\cdot5^{x-1}=5^{25}\)
\(\Rightarrow5^{x-1}=5^{25}:5^{25}\)
\(\Rightarrow5^{x-1}=1\)
\(\Rightarrow5^{x-1}=5^0\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
a) 5(�+7)−10=23⋅55(x+7)−10=23⋅5
⇒5(�+7)−10=40⇒5(x+7)−10=40
⇒5(�+7)=40+10⇒5(x+7)=40+10
⇒�+7=505⇒x+7=550
⇒�+7=10⇒x+7=10
⇒�=10−7⇒x=10−7
⇒�=3⇒x=3
b) 9�−2⋅32=349x−2⋅32=34
⇒9�−18=81⇒9x−18=81
⇒9�=81+18⇒9x=81+18
⇒9�=99⇒9x=99
⇒�=999⇒x=999
⇒�=11⇒x=11
c) 525⋅5�−1=525525⋅5x−1=525
⇒5�−1=525:525⇒5x−1=525:525
⇒5�−1=1⇒5x−1=1
⇒5�−1=50⇒5x−1=50
⇒�−1=0⇒x−1=0
⇒�=1⇒x=1
a: =>2x^3=58-4=54
=>x^3=27
=>x=3
b; =>(5-x)^5=2^5
=>5-x=2
=>x=3
c: =>(5x-6)^3=4^3
=>5x-6=4
=>5x=10
=>x=2
d: (3x)^3=(2x+1)^3
=>3x=2x+1
=>x=1
1=>2x3=54
=>x3=27 =>x=3
2=>(5-x)5=25
=>5-x=2
=>x=3
3=>(5x-6)3=43
=>5x-6=4
=>5x=10=>x=2
4=>3x=2x+1
=>x=1
a) \(5.3^x=405\)
\(\Rightarrow3^x=405:5\)
\(\Rightarrow3^x=81=3^4\)
\(\Rightarrow x=4\)
b) \(\left(x-2\right)^5=243\)
\(\Rightarrow\left(x-2\right)^5=3^5\)
\(\Rightarrow x-2=3\)
\(\Rightarrow x=5\)
c) \(2^x+2^{x+4}=272\)
\(\Rightarrow2^x.\left(1+2^4\right)=272\)
\(\Rightarrow2^x.17=272\)
\(\Rightarrow2^x=272:17=16\)
\(\Rightarrow2^x=2^4\)
\(\Rightarrow x=4\)
d) Từ x + 1 đến x + 2 có số số hạng là: (30 - 1) : 1 + 1 = 30 (số)
\(\left(x+1\right)+\left(x+2\right)+...+\left(x+30\right)=795\)
\(\Rightarrow30x+\frac{\left(30+1\right).30}{2}=795\)
\(\Rightarrow30x+465=795\)
\(\Rightarrow30x=330\)
\(\Rightarrow x=330:30\)
\(\Rightarrow x=11\)
a) \(5.3^x=405\)
\(3^x=\frac{405}{5}=81\)
\(3^x=3^4\)
Vậy x = 4
b ) \(\left(x-2\right)^5=243\)
\(\left(x-2\right)^5=3^5\)
\(\Rightarrow x-2=3\)
\(\Rightarrow x=3+2=5\)
Vậy x = 5
\(3^x+4^2=19^6:\left(19^3.19^2\right)-2.1^{2014}\)
\(\Rightarrow\) \(3^x+16=19^6:19^5-2\)
\(\Rightarrow\) \(3^x+16=19-2\)
\(\Rightarrow\) \(3^x+16=17\)
\(\Rightarrow\) \(3^x=1\)
\(\Rightarrow\) \(3^x=3^0\)
\(\Rightarrow\) \(x=0\)
\(a,\Rightarrow x=30-18=12\\ b,\Rightarrow x+6=45:5=9\\ \Rightarrow x=9-6=3\\ c,\Rightarrow38-3x=4^2=16\\ \Rightarrow3x=38-16=22\\ \Rightarrow x=\dfrac{22}{3}\)
Bài 6 :
a) \(\dfrac{625}{5^n}=5\Rightarrow\dfrac{5^4}{5^n}=5\Rightarrow5^{4-n}=5^1\Rightarrow4-n=1\Rightarrow n=3\)
b) \(\dfrac{\left(-3\right)^n}{27}=-9\Rightarrow\dfrac{\left(-3\right)^n}{\left(-3\right)^3}=\left(-3\right)^2\Rightarrow\left(-3\right)^{n-3}=\left(-3\right)^2\Rightarrow n-3=2\Rightarrow n=5\)
c) \(3^n.2^n=36\Rightarrow\left(2.3\right)^n=6^2\Rightarrow\left(6\right)^n=6^2\Rightarrow n=6\)
d) \(25^{2n}:5^n=125^2\Rightarrow\left(5^2\right)^{2n}:5^n=\left(5^3\right)^2\Rightarrow5^{4n}:5^n=5^6\Rightarrow\Rightarrow5^{3n}=5^6\Rightarrow3n=6\Rightarrow n=3\)
Bài 7 :
a) \(3^x+3^{x+2}=9^{17}+27^{12}\)
\(\Rightarrow3^x\left(1+3^2\right)=\left(3^2\right)^{17}+\left(3^3\right)^{12}\)
\(\Rightarrow10.3^x=3^{34}+3^{36}\)
\(\Rightarrow10.3^x=3^{34}\left(1+3^2\right)=10.3^{34}\)
\(\Rightarrow3^x=3^{34}\Rightarrow x=34\)
b) \(5^{x+1}-5^x=100.25^{29}\Rightarrow5^x\left(5-1\right)=4.5^2.\left(5^2\right)^{29}\)
\(\Rightarrow4.5^x=4.25^{2.29+2}=4.5^{60}\)
\(\Rightarrow5^x=5^{60}\Rightarrow x=60\)
c) Bài C bạn xem lại đề
d) \(\dfrac{3}{2.4^x}+\dfrac{5}{3.4^{x+2}}=\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{10}}\)
\(\Rightarrow\dfrac{3}{2.4^x}-\dfrac{3}{2.4^8}+\dfrac{5}{3.4^{x+2}}-\dfrac{5}{3.4^{10}}=0\)
\(\Rightarrow\dfrac{3}{2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)+\dfrac{5}{3.4^2}\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)=0\)
\(\Rightarrow\left(\dfrac{1}{4^x}-\dfrac{1}{4^8}\right)\left(\dfrac{3}{2}+\dfrac{5}{3.4^2}\right)=0\)
\(\Rightarrow\dfrac{1}{4^x}-\dfrac{1}{4^8}=0\)
\(\Rightarrow\dfrac{4^8-4^x}{4^{x+8}}=0\Rightarrow4^8-4^x=0\left(4^{x+8}>0\right)\Rightarrow4^x=4^8\Rightarrow x=8\)
x= 5 ;6
x = 5 vì (5-5) mũ 4 =0 và (5-5) mũ 6 = 0 mà 0 = 0 nên x = 5