K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

Ta có : (am)n = am.am........am (n thừa số am) = am.n 

Điều phải chúng minh  

a, Gói 5 số tự nhiên liên tiếp là a,á+1,a+2.a+3.a+4(a thuộc N)

+Nếu a chia hết cho 5 , bài toán giải xong

+ Nếu a chia 5 dư 1, đặt a=5b+1(b thuộc N ) ta có a+4=5b+1+4=(5b+5) chia hết cho 5

+ Nếu a chia 5 dư 2, đặt a=5c+2 (c thuộc N) ta có a+3=5c+2+3=(5c+5) chia hết cho 5

+ Nếu a chia 5 dư 3 , đặt a=5d+3(d thuộc N) ta có a+2=5đ +3+2=(5d+5) chia hết cho5

+ Nếu a chia 5 dư 3, đặt a= 5e +4 ( e thuốc N ) ta có  a+1=5e+4+1=(5e+5) chia hết cho 5

Vậy trong 5 số tự nhiên liên tiếp, có một số chia hết  cho 5

b, 19 m+19m+1,19m+2,19m+3,19m+4 là 5 số tự nhiên liên tiếp nên theo câu a có 1 số chia hết cho 5 ma 19m ko chia hết cho 5 với mọi m thuộc N 

do đó : 19m+1,19m+2,19m+3,19m+4 có 1 số chia hết cho 5

=>(19m+1);(19m+2) (19m+3), (19m+4) chia hết cho 5

28 tháng 12 2016

bài này mình chụi

10 tháng 10 2017

(a^m)^n= a^m. a^m....a^m( n số)= (a.a.a...a).(a.a.a.a...a)......(a.a.a..a)(có n tích a.a...a, có m atrong 1 tích)

=> (a.a...a)......(a.a...a) = a.a.a.a.....a => số số a nhân với nhau sẽ bằng m.n = a^ m.n

a^n .b^n = a.a.a...a(n số) . b.b...b ( n số) = (a.b) . (a.b)....(a.b) (n tích ) => = (a.b)^n

AH
Akai Haruma
Giáo viên
24 tháng 6 2024

Lời giải:

Nếu $m$ hoặc $n$ chia hết cho $3$ thì hiển nhiên $mn(m^2-n^2)\vdots 3$.

Nếu $m$ và $n$ đều không chia hết cho $3$

$\Rightarrow m^2, n^2$ chia 3 dư $1$ (tính chất số chính phương)

$\Rightarrow m^2-n^2\vdots 3$

$\Rightarrow mn(m^2-n^2)\vdots 3$

Vậy $mn(m^2-n^2)\vdots 3$ với mọi $m,n$ nguyên.

AH
Akai Haruma
Giáo viên
24 tháng 6 2024

a: Xét ΔABM và ΔACN có

AB=AC

\(\widehat{ABM}=\widehat{ACN}\)

BM=CN

Do đó: ΔABM=ΔACN

Suy ra: AM=AN

hay ΔAMN cân tại A

b: Xét ΔHBM vuông tại H và ΔKCN vuông tại K có

BM=CN

\(\widehat{M}=\widehat{N}\)

Do đó: ΔHBM=ΔKCN

Suy ra: HB=KC

c: Ta có: ΔHBM=ΔKCN

nên \(\widehat{HBM}=\widehat{KCN}\)

=>\(\widehat{OBC}=\widehat{OCB}\)

hayΔOBC cân tại O