K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2018

7.52n + 12.6n 

= 7.25n - 7.6n + 19.6n 

=> 7.25n - 7.6n + 19.6n \(⋮\)19

11 tháng 8 2021

Ta có: \(7.5^{2n}+12.6^n\)

\(7.5^{2n}+\left(19-7\right).6^n\)

\(7.5^{2n}+19.6^n-7.6^n\)

\(7\left(5^{2n}-6^n\right)+19.6^n\)

\(7\left(25^n-6^n\right)+19.6^n\)

Có: \(19+6^n⋮19\)

\(7\left(25^n-6^n\right)⋮19\)

Vậy...................(đpcm)

11 tháng 8 2021

Thank bn nha

NV
8 tháng 1 2024

Đặt \(A=7.5^{2n}+12.6^n=7.25^n+12.6^n\)

Do \(25\equiv6\left(mod19\right)\Rightarrow25^n\equiv6^n\left(mod19\right)\)

\(\Rightarrow A\equiv7.6^n+12.6^n\left(mod19\right)\)

\(\Rightarrow A\equiv19.6^n\left(mod19\right)\)

Do \(19.6^n⋮19\Rightarrow A⋮19\)

8 tháng 1 2024

A = 7.52n + 12.6n

A = 7.(52)n + 12.6n

A = 7.25n + 12.6n

25  \(\equiv\) 6 (mod 19)

25n \(\equiv\) 6n (mod 19)

7    \(\equiv\) - 12 (mod 19)

⇒ 7.25n \(\equiv\) -12.6n (mod 19)

⇒ 7.25n -( -12.6n) ⋮ 19

⇒ 7.25n + 12.6n   ⋮ 19

 

 

DS
13 tháng 11 2023

Để chứng minh rằng (11a + 2b) chia hết cho 19, ta cần chứng minh rằng (10a + 7b) cũng chia hết cho 19. Giả sử (11a + 2b) chia hết cho 19, tức là tồn tại số nguyên k sao cho: 11a + 2b = 19k (1) Nhân cả hai vế của phương trình (1) với 10, ta có: 110a + 20b = 190k (2) Trừ phương trình (2) cho phương trình (1), ta được: (110a + 20b) - (11a + 2b) = 190k - 19k 99a + 18b = 171k Chia cả hai vế của phương trình trên cho 19, ta có: (99a + 18b)/19 = 171k/19 5a + b = 9k Nhân cả hai vế của phương trình trên với 2, ta có: 10a + 2b = 18k Thêm cả hai vế của phương trình trên với (11a + 2b), ta có: (10a + 2b) + (11a + 2b) = 18k + 19k 21a + 4b = 37k Chia cả hai vế của phương trình trên cho 19, ta có: (21a + 4b)/19 = 37k/19 a + (2b/19) = 2k Vì a, b, và k đều là số nguyên, nên (2b/19) cũng phải là số nguyên. Điều này chỉ xảy ra khi (2b/19) là một số nguyên chia hết cho 2. Vậy, ta có thể kết luận rằng nếu (11a + 2b) chia hết cho 19, thì (10a + 7b) cũng chia hết cho 19.
ko chép

 

5 tháng 10 2019

Câu hỏi của Lê khánh giang - Toán lớp 8 - Học toán với OnlineMath

Tham khảo

5 tháng 10 2019

Em tham khảo link: Câu hỏi của Lê khánh giang - Toán lớp 8 - Học toán với OnlineMath

22 tháng 4 2016

19^93-19^39=19^39.[19^54-1]=19^38.19.[19^54-1]

Vi 19^54 la so le, 1 la so le nen 19^54-1 chia het cho 2 suy ra 19^93-19^39 chia het cho 38

Chung to..

18 tháng 11 2015

Làm gì có chuyện 1919+6919=(19+69)19

10 tháng 5 2021

`S=1/19+1/19^2+1/19^3+........+1/19^20`

`=>19S=1+1/19+1/19^2+.....+1/19^19`

`=>19S-S=18S=1-1/19^20<1`

`=>S<1/18(đpcm)`

Giải:

S=\(\dfrac{1}{19}+\dfrac{1}{19^2}+\dfrac{1}{19^3}+...+\dfrac{1}{19^{10}}\) 

19S=\(1+\dfrac{1}{19}+\dfrac{1}{19^2}+...+\dfrac{1}{19^9}\) 

19S-S=\(\left(1+\dfrac{1}{19}+\dfrac{1}{19^2}+...+\dfrac{1}{19^9}\right)-\left(\dfrac{1}{19}+\dfrac{1}{19^2}+\dfrac{1}{19^3}+...+\dfrac{1}{19^{10}}\right)\) 

18S=1-\(\dfrac{1}{19^{10}}\) 

S=(1-\(\dfrac{1}{19^{10}}\) ):18

S=\(1:18-\dfrac{1}{19^{10}}:18\) 

S=\(\dfrac{1}{18}-\dfrac{1}{19^{10}.18}\) 

⇒S<\(\dfrac{1}{18}\) (đpcm)

Chúc bạn học tốt!