tìm x biết : a)/x/<a (x,a E Q ;a>0)
b) /x/>a(x,aE Q; a>0)
c)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A\left(x\right)=x^2-10x+25\)
\(\Rightarrow A\left(x\right)=\left(x-5\right)^2\)
\(\Rightarrow\left\{{}\begin{matrix}A\left(0\right)=\left(0-5\right)^2=25\\A\left(-1\right)=\left(-1-5\right)^2=36\end{matrix}\right.\)
b) \(A\left(x\right)+B\left(x\right)=6x^2-5x+25\)
\(\Rightarrow B\left(x\right)=6x^2-5x+25-A\left(x\right)\)
\(\Rightarrow B\left(x\right)=6x^2-5x+25-\left(x^2-10x+25\right)\)
\(\Rightarrow B\left(x\right)=6x^2-5x+25-x^2+10x-25\)
\(\Rightarrow B\left(x\right)=5x^2+5x\)
\(\Rightarrow B\left(x\right)=5x\left(x+1\right)\)
c) \(A\left(x\right)=\left(x-5\right)C\left(x\right)\)
\(\Rightarrow C\left(x\right)=\dfrac{\left(x-5\right)^2}{x-5}=x-5\left(x\ne5\right)\)
d) Nghiệm của B(x)
\(\Leftrightarrow B=0\)
\(\Leftrightarrow5x\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\end{matrix}\right.\) là nghiệm của B(x)
A \(=400\) x \(5+7\)
A \(=2000+7\)
A \(=2007\)
Vậy A = 2007
B \(=10042\) x \(5+7\)
B \(=50210+7=20217\)
Vậy B = 20217
B mik không biết là cái đề như A hay là khác tại vì bạn chưa cho đề của B là gì
abc:(a+b+c)=100
aba=(a+b+c)x100
abc=a x100+bx100+cx100
ax100+bx10+c=ax100+bx100+cx100
( đề có vẻ sai )
abc:(a+b+c)=100
aba=(a+b+c)x100
abc=a x100+bx100+cx100
ax100+bx10+c=ax100+bx100+cx100
( đề có vẻ sai ) Nếu bn cảm thấy đúng thì k cho mình nhé!Học Tốt
b: Thay \(x=7-2\sqrt{6}\) vào A, ta được:
\(A=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-7+2\sqrt{6}-5\left(\sqrt{6}+1\right)-1}\)
\(=\dfrac{3\cdot\left(\sqrt{6}-1\right)}{-8+2\sqrt{6}-5\sqrt{6}-5}\)
\(=\dfrac{-3\sqrt{6}+3}{13+3\sqrt{6}}=\dfrac{93-48\sqrt{6}}{115}\)
a:
\(70=2\cdot5\cdot7;84=2^2\cdot3\cdot7\)
=>\(ƯCLN\left(70;84\right)=2\cdot7=14\)
=>\(ƯC\left(70;84\right)=Ư\left(14\right)=\left\{1;2;7;14\right\}\)
\(70⋮x;84⋮x\)
=>\(x\inƯC\left(70;84\right)\)
=>\(x\inƯ\left(14\right)\)
=>\(x\in\left\{1;2;7;14\right\}\)
mà x>8
nên x=14
b: \(35=5\cdot7;45=3^2\cdot5\)
=>\(BCNN\left(35;45\right)=3^2\cdot5\cdot7=9\cdot35=315\)
\(a⋮35;a⋮45\)
=>\(a\in BC\left(35;45\right)\)
=>\(a\in B\left(315\right)\)
=>\(a\in\left\{315;630;945;...\right\}\)
mà 500<a<900
nên a=630
A) Để tìm số tự nhiên x, ta cần tìm ước chung lớn nhất của 70 và 84. Ta có:
70 : x = 84 : x
Đặt ước chung lớn nhất của 70 và 84 là d. Ta có:
70 = d * m1
84 = d * m2
Trong đó m1 và m2 là các số tự nhiên. Ta thấy d là ước chung lớn nhất của 70 và 84 khi và chỉ khi d là ước chung lớn nhất của m1 và m2.
Ta phân tích 70 và 84 thành các thừa số nguyên tố:
70 = 2 * 5 * 7
84 = 2^2 * 3 * 7
Ta thấy ước chung lớn nhất của 70 và 84 là 2 * 7 = 14.
Vì x > 8, nên x = 14.
B) Để tìm số tự nhiên a, ta cần tìm ước chung lớn nhất của a và 35, cũng như ước chung lớn nhất của a và 45. Ta có:
a : 35 = a : 45
Đặt ước chung lớn nhất của a và 35 là d1, và ước chung lớn nhất của a và 45 là d2. Ta có:
a = d1 * m1
a = d2 * m2
Trong đó m1 và m2 là các số tự nhiên. Ta thấy a là số tự nhiên khi và chỉ khi a là ước chung lớn nhất của m1 và m2.
Ta phân tích 35 và 45 thành các thừa số nguyên tố:
35 = 5 * 7
45 = 3^2 * 5
Ta thấy ước chung lớn nhất của 35 và 45 là 5.
Vì 500 < a < 900, nên a = 5.
a) \(A=\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}+\dfrac{x^2-1}{9-x^2}\right):\left(2-\dfrac{x+5}{x+3}\right)\) (ĐK: \(x\ne\pm3\))
\(A=\left[\dfrac{x\left(x-3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{2\left(x+3\right)}{\left(x+3\right)\left(x-3\right)}-\dfrac{x^2-1}{\left(x+3\right)\left(x-3\right)}\right]:\left(2+\dfrac{x+5}{x+3}\right)\)
\(A=\dfrac{x^2-3x-2x-6-x^2+1}{\left(x+3\right)\left(x-3\right)}:\dfrac{2\left(x+3\right)-\left(x+5\right)}{x+3}\)
\(A=\dfrac{-5x-5}{\left(x+3\right)\left(x-3\right)}\cdot\dfrac{x+3}{x+1}\)
\(A=\dfrac{-5\left(x+1\right)\left(x+3\right)}{\left(x+3\right)\left(x-3\right)\left(x+1\right)}\)
\(A=\dfrac{-5}{x-3}\)
b) Ta có: \(\left|x\right|=1\)
TH1: \(\left|x\right|=-x\) với \(x< 0\)
Pt trở thành:
\(-x=1\) (ĐK: \(x< 0\))
\(\Leftrightarrow x=-1\left(tm\right)\)
Thay \(x=-1\) vào A ta có:
\(A=\dfrac{-5}{x-3}=\dfrac{-5}{-1-3}=\dfrac{5}{4}\)
TH2: \(\left|x\right|=x\) với \(x\ge0\)
Pt trở thành:
\(x=1\left(tm\right)\) (ĐK: \(x\ge0\))
Thay \(x=1\) vào A ta có:
\(A=\dfrac{-5}{x-3}=\dfrac{-5}{1-2}=\dfrac{5}{2}\)
c) \(A=\dfrac{1}{2}\) khi:
\(\dfrac{-5}{x-3}=\dfrac{1}{2}\)
\(\Leftrightarrow-10=x-3\)
\(\Leftrightarrow x=-10+3\)
\(\Leftrightarrow x=-7\left(tm\right)\)
d) \(A\) nguyên khi:
\(\dfrac{-5}{x-3}\) nguyên
\(\Rightarrow x-3\inƯ\left(-5\right)\)
\(\Rightarrow x\in\left\{8;-2;2;4\right\}\)
a: \(A=\left(\dfrac{x}{x+3}-\dfrac{2}{x-3}+\dfrac{x^2-1}{9-x^2}\right):\left(2-\dfrac{x+5}{x+3}\right)\)
\(=\dfrac{x\left(x-3\right)-2\left(x+3\right)-x^2+1}{\left(x-3\right)\left(x+3\right)}:\dfrac{2x+6-x-5}{x+3}\)
\(=\dfrac{x^2-3x-2x-6-x^2+1}{\left(x-3\right)\left(x+3\right)}\cdot\dfrac{x+3}{x+1}\)
\(=\dfrac{-5x-5}{\left(x-3\right)}\cdot\dfrac{1}{x+1}=\dfrac{-5}{x-3}\)
b: |x|=1
=>x=-1(loại) hoặc x=1(nhận)
Khi x=1 thì \(A=\dfrac{-5}{1-3}=-\dfrac{5}{-2}=\dfrac{5}{2}\)
c: A=1/2
=>x-3=-10
=>x=-7
d: A nguyên
=>-5 chia hết cho x-3
=>x-3 thuộc {1;-1;5;-5}
=>x thuộc {4;2;8;-2}
Bài 2:
a) Ta có: \(\left|x-2\right|=\left|4-x\right|\)
\(\Leftrightarrow x-2=4-x\)
\(\Leftrightarrow2x=6\)
hay x=3
b) Ta có: \(\left(\left|2x-1\right|-3\right)\cdot\left(-2\right)+\left(-5\right)=6\)
\(\Leftrightarrow\left(\left|2x-1\right|-3\right)\cdot\left(-2\right)=11\)
\(\Leftrightarrow\left|2x-1\right|-3=\dfrac{-11}{2}\)
\(\Leftrightarrow\left|2x-1\right|=\dfrac{-11}{2}+\dfrac{6}{2}=\dfrac{-5}{2}\)(Vô lý)
dễ ẹt mà cũng phải up lên
giỏi thì lm hộ cái coi