Chứng minh rằng :
\(E=8^8+4^{10}⋮17\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{10^8+2}{10^8-1}=1+\frac{3}{10^8-1}\)
\(B=\frac{10^8}{10^8-3}=1+\frac{3}{10^8-3}\)
Vì\(10^8-1>10^8-3\)
\(\Rightarrow\frac{3}{10^8-1}< \frac{3}{10^8-3}\)
\(\Rightarrow1+\frac{3}{10^8-1}< 1+\frac{3}{10^8-3}\)
Vậy \(A< B\)
Bài 7 :43^1 =43. tận cùng là số 3
43^2= 1849 tận cùng là số 9
43^3 =79507 tận cùng là số 7
43^4 =3418801 tận cùng là số 1
43^5 = 147008443 tiếp tục tận cùng là số 3
vậy quy luật của nó cứ lặp đi lặp lại theo dãy 4 số 3 - 9 - 7 - 1
ta có 43 chia 4 dư 3. vậy tận cùng của số 43^43 là 7
tương tự ta có số tận cùng của 17^17 là 7.
vậy thì 43^43 - 17^17 ra số có tận cùng là 0. mà số có tận cùng là 0 thì luôn chia hết cho 10 (điều phải chứng minh)
Bài 8 : \(7^{1000}=\left(7^2\right)^{500}=49^{500}\)
\(3^{1000}=\left(3^2\right)^{500}=9^{500}\)
Ta có : lũy thừa tận cùng là 9 khi nâng bậc lũy thừa chẵn nên tận cùng là 1.
=> \(49^{500}\) tận cùng là 1
=> \(9^{500}\) tận cùng là 1
=> (...1) - (....1) = (....0)
Vì tận cùng là 0 nên chia hết cho 10
Vậy 71000 - 31000 chia hết cho 10 (đpcm)
10/17+8/15+11/16=1,809068627 ko tin ra hết quả này thì cứ bấm máy tính đi
=>1,809068627 \(<\)2
ủng hộ nhiều vào nha
1) \(10^{19}+10^{18}+10^{17}=10^{16}.10^3+10^{16}.10^2+10^{16}.10=10^{16}.\left(1000+100+10\right)=10^{16}.1110\)
vì 1110 : 555 bằng 2
=> ................... chia hết cho 555
1) ( 1019+ 1018+1017) chia hết cho 555
= 1017.102+1018.10+1017
= 1017.(102+10+1)
= 1017.111
= 1016.10.111
= 1016.1110 = 1016.555.2
=> ( 1019+ 1018+1017) chia hết cho 555
88 + 410
= ( 23)8 + 410
= 224 + 410
= 220 x 24 + 410
= 220 x ( 410 + 1 )
= 220 x 17 nếu nhân ra kết quả mà chia hết cho 17 thì số đó chia hết cho 17