Cho tam giác ABC có AB=c, AC=b. Tính BC theo b,c và tỉ số lượng giác của góc A
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


a: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay AC=12(cm)
b: Xét ΔBAC vuông tại A có
\(\sin\widehat{B}=\cos\widehat{C}=\dfrac{AC}{BC}=\dfrac{12}{13}\)
\(\cos\widehat{B}=\sin\widehat{C}=\dfrac{5}{13}\)
\(\tan\widehat{B}=\cot\widehat{C}=\dfrac{AC}{AB}=\dfrac{12}{5}\)
\(\cot\widehat{B}=\tan\widehat{C}=\dfrac{AB}{AC}=\dfrac{5}{12}\)

cho tam giác ABC vuông tại A .Biết AB=7cm và AC=21 cm .tính các tỉ số lượng giác của góc B vá góc C

Theo đề ta tính được :
tan B= AC/AB=4/3
cot B= AB/AC=3/4
TAN c= AB/AC=3/4
COT C= AC/AB = 4/3
Dựa trên bài tập 14 trong sách giáo khoa ta có:
tan B= sinB/ cos B = 4/3 thay số vào ta tính đc sin B và cos B
tan C = sin C/ cos C = 3/4 thay số vào tính ta được sin C và cos C
=> tính đc tỷ số lượng giác.
(_ Mk chỉ bày cách tính hoy cậu tự làm để nhớ nhé !!_)

a: AC=căn 5^2+12^2=13cm
sin C=AB/AC=12/13
cos C=5/13
tan C=12/5
cot C=1:12/5=5/12
b: AC=căn 10^2+3^2=căn 109(cm)
sin C=AB/AC=3/căn 109
cos C=BC/AC=10/căn 109
tan C=AB/BC=3/10
cot C=10/3
c: BC=căn 5^2-3^2=4cm
sin C=AB/AC=3/5
cos C=4/5
tan C=3/4
cot C=4/3

a: Xét ΔABC có
\(BC^2=AB^2+AC^2\)
hay ΔBCA vuông tại A

Lời giải:
a. $AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4$ (cm)
$\cos B=\frac{AB}{BC}=\frac{3}{5}$
$\sin B = \frac{AC}{BC}=\frac{4}{5}$
$\tan B = \frac{AC}{AB}=\frac{4}{3}$
$\cot B = \frac{AB}{AC}=\frac{3}{4}$
b.
$BC=\sqrt{AB^2+AC^2}=\sqrt{5^2+12^2}=13$ (cm)
$\sin C = \frac{AB}{BC}=\frac{5}{13}$
$\cos C=\frac{AC}{BC}=\frac{12}{13}$
$\tan C=\frac{AB}{AC}=\frac{5}{12}$
$\cot C=\frac{AC}{AB}=\frac{12}{5}$

Sử dụng các tỉ số lượng giác, tính được:
sinB = 3 5 ; cosB = 4 5 ; tanB = 3 4 ; cotB = 4 3
=> sinA = 4 5 ; cosA = 3 5 ; tanA = 4 3 ; cotA = 3 4