cho hình vẽ ABCD tính BC BD DC AD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C D 4 9 E I
a, Xét tam giác ABD và tam giác BDC ta có :
^BAD = ^CBD ( gt )
^ABD = ^BDC ( so le trong )
Vậy tam giác ABD ~ tam giác BDC ( g.g )
\(\Rightarrow\frac{AB}{BD}=\frac{BD}{DC}\)( tỉ số đồng dạng ) \(\Rightarrow BD^2=AB.DC=4.9=36\)
\(\Rightarrow BD=\sqrt{36}=6\)cm
b, Gọi giao điểm AC và BD là I
Xét tam giác BIE và tam giác AID có : BE // AD
Theo hệ quả Ta lét ta có : \(\frac{BI}{ID}=\frac{IE}{IA}=\frac{BE}{AD}\)
Xét tam giác AIB và tam giác DIC có AB // CD ( ABCD là hình thang )
\(\frac{AI}{IC}=\frac{IB}{ID}=\frac{AB}{DC}\)
mà \(\frac{BE}{AC}=\frac{AB}{DC}=\frac{IB}{ID}\Rightarrow BE.DC=AB.AC\)
a: Xét ΔBDC vuông tại B và ΔHBC vuông tại H có
góc C chung
=>ΔBDC đồng dạng vói ΔHBC
b: \(BD=\sqrt{25^2-15^2}=20\left(cm\right)\)
HC=15^2/25=9cm
HD=25-9=16cm
Áp dụng các hệ thức lượng trong tam giác vuông BDC cùng chú ý độ dài đường cao hạ từ B xuống CD bằng AD, ta tính được : AB = 9cm, BD =15cm, hoặc AB = 16cm, BC = 15cm, BD = 20cm
a: Xét tứ giác ABFD có
AB//FD
BF//AD
=>ABFD là hình bình hành
=>AB=DF
Xét tứ giác ABCK có
AB//CK
AK//BC
=>ABCK là hình bình hành
=>AB=CK=DF
c: Xet ΔMAB và ΔMKD có
góc MAB=góc MKD
góc AMB=góc KMD
=>ΔMAB đồng dạng với ΔMKD
=>MB/MD=AB/KD
BP/PC=DF/FC
mà KD=FC
và AB=DF
nên MB/MD=BP/PC
=>MP//DC
Kẻ thêm đường cao BH xuống DC \(\left(H\in DC\right)\)
Dễ thấy \(ABHD\) là hcn nên \(AD=BH=10\left(cm\right)\)
Áp dụng HTL cho ...
\(BH^2=DH\cdot HC\Rightarrow HD\cdot HC=100\)
Mà \(HD+HC=CD=20\left(cm\right)\)
\(\Rightarrow\left\{{}\begin{matrix}HD\cdot HC=100\\HD+HC=20\end{matrix}\right.\Rightarrow HD=HC=10\)
Ta có \(BD=\sqrt{HD^2+HB^2}=\sqrt{10^2+10^2}=10\sqrt{2}\left(cm\right)\left(pytago\right)\)
Kẻ BE ⊥ CD tại E
Suy ra tứ giác ABED là hình chữ nhật (vì A ^ = D ^ = E ^ = 90 ∘ ) nên BE = AD = 12cm
Đặt EC = x (0 < x < 20) thì DE = 20 – x
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông BCD ta có:
B E 2 = E D . E C ⇔ x(20 – x) = 100 ⇔ x 2 - 20 X + 100 = 0
⇔ ( x - 10 ) 2 = 0 ⇔ x = 10 (tm)
Với EC = 10, theo định lý Pytago ta có BC = B E 2 + E C 2 = 10 2 + 10 2 = 10 2
Vậy BC = 10 2 cm
Đáp án cần chọn là: B
Kẻ BE ⊥ CD tại E
Suy ra tứ giác ABED là hình chữ nhật (vì A ^ = D ^ = E ^ = 90 ∘ ) nên BE = AD = 12cm
Đặt EC = x (0 < x < 25) thì DE = 25 – x
Áp dụng hệ thức giữa cạnh và đường cao trong tam giác vuông BCD ta có:
B E 2 = E D . E C ⇔ x ( 25 - x ) = 144 ⇔ x 2 - 25 x + 144 = 0
x 2 - 16 x - 9 x + 144 = 0 <=> x(x – 16) – 9(x – 16) = 0 <=> (x – 16)(x – 9) = 0
⇔ x = 16 x = 9 (thỏa mãn)
Với EC = 16, theo định lý Pytago ta có BC = B E 2 + E C 2 = 12 2 + 16 2 = 20 (loại)
Với EC = 9, theo định lý Pytago ta có BC = B E 2 + E C 2 = 12 2 + 9 2 = 15 (nhận)
Vậy BC = 15cm
Đáp án cần chọn là: A
Hình vẽ?