tìm x, y, z biết
4x^2+y^2+9z^2=4x-4y-6z-6
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$x^2+4y^2+9z^2=2x+4y+6z-3$
$\Leftrightarrow (x^2-2x+1)+(4y^2-4y+1)+(9z^2-6z+1)=0$
$\Leftrightarrow (x-1)^2+(2y-1)^2+(3z-1)^2=0$
Ta thấy: $(x-1)^2\geq 0; (2y-1)^2\geq 0; (3z-1)^2\geq 0$ với mọi $x,y,z\in\mathbb{R}$
Do đó để tổng của chúng bằng $0$ thì:
$(x-1)^2=(2y-1)^2=(3z-1)^2=0$
$\Leftrightarrow x=1; y=\frac{1}{2}; z=\frac{1}{3}$
Khi đó:
$xyz=1.\frac{1}{2}.\frac{1}{3}=\frac{1}{6}$
=(x2+2xy+y2)+(y2-4yz+4z2)+(y2-2y+1)+(z2-2z+1)-4x-2y-4z+5
=(x+y)2-4(x+y)+4 +(y-2z)2+2(y-2z)+1 +(y-1)2+(z-1)2
=(x+y-2)2+(y-2z+1)2+(y-1)2+(z-1)2\(\ge0\)\(\forall_{x,y,z}\)
Lai co (x+y-2)2+(y-2z+1)2+(y-1)2+(z-1)2\(\le\)0
=> (x+y-2)2+(y-2z+1)2+(y-1)2+(z-1)2=0
Dau = xay ra khi x=y=z=1
1)
\(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-19\)
\(\Leftrightarrow x^3+3x^2+3x+1-\left(x^3-3x^2+3x-1\right)-6\left(x^2-2x+1\right)=-19\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6x^2+12x-6+19=0\)
\(\Leftrightarrow\left(x^3-x^3\right)+\left(3x^2+3x^2-6x^2\right)+\left(3x-3x+12x\right)+\left(1+1-6+19\right)=0\)
\(\Leftrightarrow12x+15=0\)
\(\Leftrightarrow x=-\frac{5}{4}\)
\(a,4x=5y\:\Rightarrow\frac{x}{5}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{12}\)
\(4y=6z\Rightarrow\frac{y}{6}=\frac{z}{4}\Rightarrow\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{x}{15}=\frac{2y}{24}=\frac{3z}{24}\)
\(\Rightarrow\frac{x-2y+3z}{15-24+24}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{5}{15}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\frac{1}{3}=\frac{x}{15}=\frac{y}{12}=\frac{z}{8}\)
\(\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\cdot15=5\\y=\frac{1}{3}\cdot12=4\\z=\frac{1}{3}\cdot8=\frac{8}{3}\end{cases}}\)
\(\Leftrightarrow\left(x^2-2x+1\right)+\left(y^2-4y+4\right)+\left(z^2-6z+9\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2+\left(y-2\right)^2+\left(z-3\right)^2=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-1=0\\y-2=0\\z-3=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\\z=3\end{matrix}\right.\)